If (x+1) is a factor of 2x^3 +ax^2 + 2bx +1, then find the values of a and bgiven that 2a - 3b = 4?
Answers
Question :–
• If (x + 1) is a factor of 2x³ +ax² + 2bx + 1 = 0 , then find the values of a and b given that 2a - 3b = 4.
ANSWER :–
➪ a = 5 and b = 2
EXPLANATION :–
GIVEN :–
• A polynomial 2x³ + ax² + 2bx + 1 = 0 have a factor (x + 1) .
• Other relation ⇨ 2a - 3b = 4
TO FIND :–
• Value of a and b .
SOLUTION :–
▪︎ (x + 1) is a factor of given polynomial , So that x = -1 will satisfy the given equation.
▪︎ Put x = -1 in given polynomial –
⇒ 2(-1)³ + a(-1)² + 2b(-1) + 1 = 0
⇒ -2 + a - 2b + 1 = 0
⇒ a - 2b = 1
⇒ a = 1 + 2b ——————eq.(1)
• Now use given condition –
⇒ 2a - 3b = 4
⇒ 2(1 + 2b) - 3b = 4 [using eq.(1)]
⇒ 2 + 4b - 3b = 4
⇒ b = 4 - 2
⇒ b = 2
• Put the value of b in eq.(1) –
⇒ a = 1 + 2(2)
⇒ a = 1 + 4
⇒ a = 5
Hence , a = 5 and b = 2 .