if ( X+1) is a factor of 2x cube +ax square + 2 bx+1 then find the value of a and b given that 2a-3b= 4
Answers
➙ Given that (x+1) is a factor of p(x)
➙ Therefore, -1 is a zero of given p(x)
- herefore, -1 is a zero of given p(x) p(x) = 2x³ + ax² + 2bx + 1
➙ Substituting the value of -1 in the given p(x),we get
➡ p(x)=2(-1)³ + a(-1)² + 2b(-1) + 1
➡ -2 + a -2b + 1
➡ -1 + a - 2b
➡ a - 2b = 1
- Also given that 2a - 3b = 4
- So we got two equations
↪ a - 2b = 7 ...(1)
↪ 2a - 3b = 4 ...(2)
➡ (1)* (2)* (4)- 2 = 2a - 4b = (3)
➡ (2)* 1 = 2a - 3b = 4 (4)
➡ (4) - (3) = [2a - 2a ] + [-3b - (-4b)] = 4 - 2
➡ -3b + 4b = 2
∴ b = 2
- Substituting the value of b in (3)
➡ 2a - 4b = 2
➡ 2a - (4*2) = 2
➡ 2a - 8 = 2
➡ 2a = 2 + 8
➡ 2 = 10
➡ a = 10 / 2
∴ a = 5
Hence, a = 5 & b = 2
☛ ʜᴏᴘᴇ ɪᴛ ʜᴇʟᴘs ʏᴏᴜ.
☛ᴛʜᴀɴᴋ ᴍʏ ᴀɴsᴡᴇʀ.
Step-by-step explanation:
þLÈÄ§È MÄRK MÈ Ä§ ßRÄÌñLÌȧ† ✌✌✌
➙ Given that (x+1) is a factor of p(x)
➙ Therefore, -1 is a zero of given p(x)
therefore, -1 is a zero of given p(x) p(x) = 2x³ + ax² + 2bx + 1
➙ Substituting the value of -1 in the given p(x),we get
➡ p(x)=2(-1)³ + a(-1)² + 2b(-1) + 1
➡ -2 + a -2b + 1
➡ -1 + a - 2b
➡ a - 2b = 1
Also given that 2a - 3b = 4
So we got two equations
↪ a - 2b = 7 ...(1)
↪ 2a - 3b = 4 ...(2)
➡ (1)* (2)* (4)- 2 = 2a - 4b = (3)
➡ (2)* 1 = 2a - 3b = 4 (4)
➡ (4) - (3) = [2a - 2a ] + [-3b - (-4b)] = 4 - 2
➡ -3b + 4b = 2
∴ b = 2
Substituting the value of b in (3)
➡ 2a - 4b = 2
➡ 2a - (4*2) = 2
➡ 2a - 8 = 2
➡ 2a = 2 + 8
➡ 2 = 10
➡ a = 10 / 2
∴ a = 5
Hence, a = 5 & b = 2
☛ ʜᴏᴘᴇ ɪᴛ ʜᴇʟᴘs ʏᴏᴜ.