Math, asked by shubhamchaudhary08, 9 months ago

If (x-1) is a factor of 2x3 + 8x2 +3x + k then find the value of k.​

Answers

Answered by Anonymous
6

Given:

  • (x-1) is a factor of 2x³ + 8x² + 3x + k

Find:

  • what will be the value of k?

Solution:

Here,

(x - 1) is a factor of eq. so,

Let, x - 1 = 0

x = 1

If we put x = 1 in eq. So, it gives us 0.

So,

 \rm \to2 {x}^{3}  + 8 {x}^{2}  + 3x + k = 0

 \rm \to2 {(1)}^{3}  + 8 {(1)}^{2}  + 3(1) + k = 0

 \rm \to2 (1)+ 8 (1)  + 3 + k = 0

 \rm \to2 + 8   + 3 + k = 0

 \rm \to10 + 3+ k = 0

 \rm \to13+ k = 0

 \rm \to k =  - 13

Hence, the value of k will be -13.

VERIFICATION

Put value of k in 10 + 3 + k = 0 to verify our answer

 \rm \longrightarrow 10 + 3 + k = 0

 \rm \longrightarrow 10 + 3 + ( - 13)= 0

 \rm \longrightarrow 13 + ( - 13)= 0

 \rm \longrightarrow  \cancel{13}   \cancel{- 13}= 0

 \rm \longrightarrow  0= 0

Hence, Verified

Answered by prince5132
7

GIVEN :-

  • (x - 1) is a factor of p(x) 2x³ + 8x² + 3x + k.

TO FIND :-

  • The value of k.

SOLUTION :-

Let,

  \\  : \implies \displaystyle \sf x - 1 = 0 \\  \\  \\

: \implies \displaystyle \sf x = 0 + 1 \\  \\  \\

: \implies   \underline{\boxed{\displaystyle \sf x = 1}} \\  \\

__________________

 \\  \\  \dashrightarrow \displaystyle \sf p(x) = 2x ^{3}  + 8x ^{2}  + 3x + k = 0 \\  \\  \\

\displaystyle \sf   \dashrightarrow \: p(1)  = 2 \times (1) ^{3}  + 8 \times (1) ^{2}  + 3 \times 1 + k = 0 \\  \\  \\

\dashrightarrow \displaystyle \sf \: 2 \times 1 + 8 \times 1 + 3 + k = 0 \\  \\  \\

\dashrightarrow \displaystyle \sf2 + 8 + 3 + k = 0 \\  \\  \\

\dashrightarrow \displaystyle \sf13 + k = 0 \\  \\  \\

\dashrightarrow \underline{ \boxed{ \displaystyle \sf \: k =  - 13}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bigg \lgroup \displaystyle \sf \: value \: of \: k.\bigg \rgroup \\ \\

 \therefore \underline{ \displaystyle \sf The  \ Value \ of \ k\  is \ -13}

Similar questions