if (x+1) is a factor of ax^3 +x^2-2x+4x-9 find the value of a
Answers
Answered by
0
Answer:
a=2
Step-by-step explanation:
Let p(x)=ax³+x²−2x+4a−9
Let p(x)=ax³+x²−2x+4a−9As (x+1) is a factor of p(x)
Let p(x)=ax³+x²−2x+4a−9As (x+1) is a factor of p(x)∴p(−1)=0 [By factor theorem]
Let p(x)=ax³+x²−2x+4a−9As (x+1) is a factor of p(x)∴p(−1)=0 [By factor theorem]⇒a(−1)³+(−1)²−2(−1)+4a−9=0
Let p(x)=ax³+x²−2x+4a−9As (x+1) is a factor of p(x)∴p(−1)=0 [By factor theorem]⇒a(−1)³+(−1)²−2(−1)+4a−9=0⇒a(−1)+1+2+4a−9=0
Let p(x)=ax³+x²−2x+4a−9As (x+1) is a factor of p(x)∴p(−1)=0 [By factor theorem]⇒a(−1)³+(−1)²−2(−1)+4a−9=0⇒a(−1)+1+2+4a−9=0⇒−a+4a−6=0
Let p(x)=ax³+x²−2x+4a−9As (x+1) is a factor of p(x)∴p(−1)=0 [By factor theorem]⇒a(−1)³+(−1)²−2(−1)+4a−9=0⇒a(−1)+1+2+4a−9=0⇒−a+4a−6=0⇒3a−6=0
Let p(x)=ax³+x²−2x+4a−9As (x+1) is a factor of p(x)∴p(−1)=0 [By factor theorem]⇒a(−1)³+(−1)²−2(−1)+4a−9=0⇒a(−1)+1+2+4a−9=0⇒−a+4a−6=0⇒3a−6=0⇒3a=6
Let p(x)=ax³+x²−2x+4a−9As (x+1) is a factor of p(x)∴p(−1)=0 [By factor theorem]⇒a(−1)³+(−1)²−2(−1)+4a−9=0⇒a(−1)+1+2+4a−9=0⇒−a+4a−6=0⇒3a−6=0⇒3a=6⇒a=2
Answered by
0
Answer:
8of you 78hbb bghuuu
Step-by-step explanation:
85detbjgx8yd58df6dt8r6ew Welsh xi
Similar questions