Math, asked by sms12sara81, 4 months ago

if x+1 is a factor of the polynomial (x-1)(2x^2+4x+p) find p​

Answers

Answered by aadya4836
1

Answer:

x + 1 = 0 \\ x =  - 1 \\  \\ (x - 1)(2 {x}^{2}  + 4x + p) = 0 \\  \\ ( - 1 - 1)2 { (- 1})^{2}   + 4( - 1) + p = 0  \\  \\  - 2 (2  - 4 + p) = 0 \\  \\  - 2( - 2 + p) = 0 \\  \\ 4 - 2p = 0 \\  \\ 2p = 4 \\  \\ p = 2

Answered by StormEyes
1

\sf \Large Solution!!

\sf Let\:x+1=0\quad x=-1

\sf f(x)=(x-1)(2x^{2}+4x+p)

\sf f(-1)=(-1-1)(2(-1)^{2}+4(-1)+p)

\sf \large Given,\:x+1\:is\:a\:factor,\:so

\sf 0=(-2)(2-4+p)

\sf 0=-4+8-2p

\sf 2p=4

\sf p=2

Similar questions