Math, asked by hardikbhalla19, 1 year ago

if x+1 is a factor of x^4+ax^3+2bx^2+3x=4,find a and b. given that a+4b =12


hardikbhalla19: pls answer

Answers

Answered by shadowsabers03
4

Taking  p(x)=x^4+ax^3+2bx^2+3x+4,

If  (x+1)  is a factor of  p(x)=x^4+ax^3+2bx^2+3x+4, then  p(-1)=0

So,

p(-1)=(-1)^4+a(-1)^3+2b(-1)^2+3(-1)+4=0\\ \\ p(-1)=1-a+2b-3+4=0\\ \\ p(-1)=2b-a+2=0\\ \\ \\ \\ \begin{aligned}2b-a+2&=0\\ \\ 2b-a&=-2\\ \\ a-2b&=2\\ \\ a-2b+6b&=2+6b\\ \\ a+4b&=2+6b\\ \\ 12&=2+6b\ \ \ \ \ \ [\ \because\ a+4b=12\ \ \ \ \ \longrightarrow\ \ \ (1)\ ]\\ \\ 12-2&=6b\\ \\ 10&=6b\\ \\ \large \text{$\bold{\dfrac{5}{3}}$}&\ \large \text{$\bold{=b}$}\end{aligned}

From (1),

\begin{aligned}a+4b&=12\\ \\ a+4\left(\dfrac{5}{3}\right)&=12\\ \\ a+\dfrac{20}{3}&=\dfrac{36}{3}\\ \\ a&=\dfrac{36}{3}-\dfrac{20}{3}\\ \\ \large \text{$\bold{a}$}&\large \text{$\bold{\ =\dfrac{16}{3}}$}\end{aligned}

Hence,

\large \boxed{\boxed{\bold{a=\dfrac{16}{3}}}} \quad \quad \quad \boxed{\boxed{\bold{b=\dfrac{5}{3}}}}

Answered by GodBrainly
4

\Large{\sf{\underline{\underline{Solution:}}}} \\  \\ </p><p></p><p>  \large\sf Given  \colon \\ \sf p(x ) =  {x}^{4}  + a {x}^{3}  + 2b {x}^{2}  + 3x + 4 \\   \sf a + 4b = 12 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ......(i) \\ \\  \large \sf T o \: F ind  \colon \\  \sf V alue \: of \:  \rm{a} \: and \:  \rm{b}. \\  \\   \\  \sf x+1 \:  is \:  a \:  factor  \: of  \: x^4+ax^3+2bx^2+3x + 4. \\  \sf p( - 1) = 0 \\  \\  \sf p( - 1) = ( - 1)^4+a( - 1)^3+2b( - 1)^2+3 \times  -1 + 4 = 0 \\   \:  \:  \:  \:  \:  \:  \:  \: \implies \sf 1   - 1a + 2b  - 3 + 4  =  0 \\ \:  \:  \:  \:  \:  \:  \:  \: \implies \sf  2 + 2b - a = 0 \\ \:  \:  \:  \:  \:  \:  \:  \: \implies \sf 2b - a =  - 2 \\ \:  \:  \:  \:  \:  \:  \:  \: \implies \sf a - 2b =  2 \\ \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \sf( A dding \:  6b\: to \: both \: side )\\ \:  \:  \:  \:  \:  \:  \:  \: \implies \sf a - 2b + 6b = 2 + 6b \\ \:  \:  \:  \:  \:  \:  \:  \: \implies \sf a + 4b = 2 + 6b \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ( \because a + 4b = 12  \:  \:  \:  \:  \:  \: ....(i) )\\ \:  \:  \:  \:  \:  \:  \:  \: \implies \sf 12 = 2 + 6b \\ \:  \:  \:  \:  \:  \:  \:  \: \implies \sf 12 - 2 = 6b \\ \:  \:  \:  \:  \:  \:  \:  \: \implies \sf  \frac{10}{6}  = b \\ \:  \:  \:  \:  \:  \:  \:  \: \implies \boxed{ \bf  \large \frac{5}{3} = b } \\  \\  \sf  From \:  Eq_n (i), \:  We \:  have \\⇒  \sf a + 4b = 12  \\ ⇒ \sf a + 4  \times  \frac{5}{3}  = 12 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bigg( \because \sf b = \frac{5}{3} \bigg) \\   ⇒ \sf a +  \frac{20}{3}  = 12 \\ ⇒ \sf a = 12 -  \frac{20}{3}  \\  ⇒  \boxed{\bf  \large a =  \frac{16}{3} }

Similar questions