Math, asked by Gnathasri, 9 months ago

if ^ X + 1 is equals to 3 ^ 1 - X then find the value of x​

Answers

Answered by Anonymous
1

 \tt GIVEN:-

 \tt x - \frac{ 1 }{x}  = 3

 \tt FIND:-

  {x}^{3}  - \frac{1 }{ {x}^{3} }  = ?

 \tt SOLUTION:-

 \tt  {x}^{3}  -  \frac{1}{ {x}^{3} }

 \tt use \: identity \ratio  -  \\   \tt {(a - b)}^{3}  =  {a}^{3}  -  {b}^{3}  - 3ab(a - b)

 \tt  =  >  (x  -  \frac{1}{x }  {)}^{3}  =  {x}^{3}  -  \frac{1}{ {x}^{3} }  - 3 \cancel x \times  \frac{1}{ \cancel x} (x -  \frac{1}{x} )

 \tt putting \: x -  \frac{1}{x}  = 3 \: we \: get

 \tt  =  >   {3}^{3}   =  {x}^{3}  -  \frac{1}{ {x}^{3} }  - 3  \times 3

 \tt  =  > 27 =  {x}^{3}  -  \frac{1}{ {x}^{3} }  - 9

 \tt  =  > 27  + 9=  {x}^{3}  -  \frac{1}{ {x}^{3} }

 \tt  =  > 36=  {x}^{3}  -  \frac{1}{ {x}^{3} }

 \tt  =  >   {x}^{3}  -  \frac{1}{ {x}^{3} }   = 36

 \boxed{  \tt  so \: answer \: is \: 36}

Similar questions