Math, asked by piyushbobhate49, 16 hours ago

If (x - 1) is the factor of the polynomial (x³ - 2x²+ mx - 4)

then find the value of m​

Answers

Answered by NithyaSriVaishnavi
2

Answer:

I know the answer

Step-by-step explanation:

x=1

(1)^3-2(1)^2+m(1)-4=0

1-2+m-4=0

-1-4+m=0

-5+m=0

-5=-m

m=5

Answered by MathCracker
13

Question :-

If (x - 1) is the factor of the polynomial (x³ - 2x²+ mx - 4)

then find the value of m.

Answer :-

  • m = 5

Step by step explanation :-

Let,

f(x) = x³ - 2x² + mx - 4

Now, we have a factor of this polynomial

  • x - 1 is a factor.

Also can be written as,

  • x = 1

Now, it becomes,

f(x) = f(1) = x³ - 2x² + mx - 4

Now, substituting x = 1 in the given polynomial.

\rm:\longmapsto{(1) {}^{3}  - 2(1) {}^{2}  + m(1) - 4 = 0} \\  \\ \rm:\longmapsto{1 - 2 + m - 4 = 0}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:   \\  \\ \rm:\longmapsto{ - 1 - 4 + m}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ \rm:\longmapsto{ - 5 + m = 0} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \bf : \longmapsto \red{m = 5} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Learn more from brainly :

If (x + 1) and (x-2) are factors of the polynomial x³+ mx²+2x +n, find the values of m and n.

https://brainly.in/question/43849599

Similar questions