if
X= 1+loga bc
Y=1+ logb ca
Z=1= logc ab
solve XYZ
plz
Answers
you mean, if x = 1 + loga (bc), y = 1 + logb (ca) and z = 1 + logc (ca)
then we have to find xyz
solution : we know from logarithm properties
- logr (mn) = logr m + logr n
- and logr (m/n) = logr m - logr n
- = 1
now, x = 1 + loga (bc)
= loga (a) + loga (bc)
= loga (abc)
or, 1/x = log(abc) a .....(1)
similarly, y = 1 + logb (ca) = logb (abc)
or, 1/y = log(abc) b ......(2)
and z = 1 + logc (ab) = logc (abc)
or, 1/z = log(abc) c ......(3)
now, 1/x + 1/y + 1/z = log(abc) a + log(abc) b + log(abc) c
= log(abc) (a × b × c)
= log(abc) (abc)
= 1
or, 1/x + 1/y + 1/z = 1
or, (yz + yz + xy)/xyz = 1
or, xyz = xy + yz + zx
hence, xyz = xy + yz + zx
Answer:
xy + yz +zx =xyz
Step-by-step explanation:
x = 1+ log a bc =loga a+ loga bc
= loga abc
therefore 1/x=logabc a
similarly y = log b abc
z= log c abc
(xy +yz+ zx)/xyz
= 1/z + 1/x +1/y
= logabc c +logabc a +logabc b
= log abc abc
=1
(xy +yz+ zx)/xyz = 1
therefore xy + yz +zx =xyz