Math, asked by ArghaKashyap, 2 months ago

if x=1+ root 2, then show that: (x-1/x)^3= 8​

Answers

Answered by Mihir1001
1

 \quad  \footnotesize {(x -  \frac{1}{x})}^{3}

  \footnotesize={ ( \frac{ {x}^{2} - 1 }{x} )}^{3}

 \footnotesize = { \big( \frac{ {(1 +  \sqrt{2} )}^{2} - 1 }{1 +  \sqrt{2} }  \big)}^{3}

 \footnotesize =  { \big( \frac{1 + 2 + 2 \sqrt{2}  - 1}{1 +  \sqrt{2} }  \big)}^{3}

 \footnotesize =  { \big( \frac{2 + 2 \sqrt{2} }{1 +  \sqrt{2} }  \big)}^{3}

 \footnotesize =  { \big( \frac{2 \cancel{(1 +  \sqrt{2} )}}{ \cancel{(1 +  \sqrt{2})} }  \big)}^{3}

 =  {(2)}^{3}

 = 8

 \\  \\  \\  \\  \\  \\  \\

Hence, proved!

Similar questions