Math, asked by meghashah5499, 8 months ago

if x=1-root2 fibd the value of x^2+1/x^2​

Answers

Answered by promilarakesh4180
1

Step-by-step explanation:

Value of x^2+\frac{1}{x^2}x

2

+

x

2

1

is 6.

Step-by-step explanation:

Given: x=1+\sqrt{2}x=1+

2

To find: x^2+\frac{1}{x^2}x

2

+

x

2

1

x² = ( 1 + √2 )² = 1² + (√2)² + 2 × 1 × √2 = 1 + 2 + 2√2 = 3 + 2√2

\frac{1}{x^2}=\frac{1}{3+2\sqrt{2}}=\frac{1}{3+2\sqrt{2}}\times\frac{3-2\sqrt{2}}{3-2\sqrt{2}}

x

2

1

=

3+2

2

1

=

3+2

2

1

×

3−2

2

3−2

2

=\frac{3-2\sqrt{2}}{3^2-(2\sqrt{2})^2}=\frac{3-2\sqrt{2}}{9-8}=3-2\sqrt{2}=

3

2

−(2

2

)

2

3−2

2

=

9−8

3−2

2

=3−2

2

Now,

x^2+\frac{1}{x^2}=3+2\sqrt{2}+3-2\sqrt{2}=6x

2

+

x

2

1

=3+2

2

+3−2

2

=6

Therefore, Value of x^2+\frac{1}{x^2}x

2

+

x

2

1

is 6

Answered by avinashbeeraka
0

Answer:

4 + 5√2

Step-by-step explanation:

Given that x = 1 - √2,

x² + 1 / x²

= (1 - √2)² + 1 / (1 - √2)²

= 1² + √2² - 2[1][√2] +1 / 1² + √2² - 2[1][√2]

= 1 + 2 - 2√2 + 1 / 1 + 2 - 2√2

= 4 - 2√2 / 3 - 2√2

= 4 - 2√2 / 3 - 2√2 × 3 + 2√2 / 3 + 2√2 [rationalise]

= 4 - 2√2[3 + 2√2] / 3 - 2√2[3 + 2√2]

= 12 + 8√2 - 3√2 - 8 / 9 - 8      [ (a - b)(a + b) = a² - b² ]

= 4 + 5√2 / 1

= 4 + 5√2 [answer]

Hope this helps you!!!

Similar questions