If X=1-root2 find the value of (X-1/X)³
Answers
Answered by
2
Answer:
[x - (1/x)]^3 = [(x^2 - 1)/x]^3 = [((1 + 2√2 + 2) - 1)/(1 + √2)]^3 =
[x - (1/x)]^3 = [(x^2 - 1)/x]^3 = [((1 + 2√2 + 2) - 1)/(1 + √2)]^3 = [(2 + 2√2) / (1 + √2)]^3 = [(2(1 + √2)) / (1 + √2)]^3 = [2]^3 = 8
Answered by
11
Solution
Given :-
- x = (1 -√2)
Find :-
- Value of (x - 1/x)³
Step - by - Step - Explanation
Now, calculate 1/x
➡ 1/x = 1/(1-√2)
Rationalize Denominator
➡ 1/x = (1+√2)/(1-√2)(1+√2)
➡ 1/x = (1+√2)/(1² - √2²)
➡ 1/x = (1+√2)(1-2)
➡ 1/x = (1+√2)(-1)
➡ 1/x = - (1+√2)
Now, Calculate (x - 1/x)³
➡(x - 1/x)³ =
➡ [ ( 1 - √2) - {-(1+√2)}]³
➡[(1 - √2 + 1 - √2)]³
➡ [ ( 2 )]³
➡8
Hence
- Value of (x - 1/x)³ = 8
________________
Similar questions