If x=1-root2find the value of x+1/x
Answers
Given :-
x = 1 - √2
Therefore 1/x = 1/(1 - √2)
By rationalizing, we get
= 1/(1 - √2) × (1 + √2)/(1 + √2)
= (1 + √2)/[(1 - √2)(1 + √2)]
= (1 + √2)/[(1)² - (√2)²]
= (1 + √2)/(1 - 2)
= (1 + √2)/-1
= -(1 + √2)
= -1 - √2
Hence, the value of x + 1/x :-
= 1 - √2 + (-1 - √2)
= 1 - √2 - 1 - √2
= -2√2 Final Answer!
Identity used :-
(a + b)² = a² + 2ab + b²
Proof :-
= (a + b)(a + b)
= a(a + b) + b(a + b)
= a² + ab + ab + b²
= a² + 2ab + b²
Step-by-step explanation:
Given :-
Given :-x = 1 - √2
Given :-x = 1 - √2Therefore 1/x = 1/(1 - √2)
Given :-x = 1 - √2Therefore 1/x = 1/(1 - √2)By rationalizing, we get
Given :-x = 1 - √2Therefore 1/x = 1/(1 - √2)By rationalizing, we get= 1/(1 - √2) × (1 + √2)/(1 + √2)
Given :-x = 1 - √2Therefore 1/x = 1/(1 - √2)By rationalizing, we get= 1/(1 - √2) × (1 + √2)/(1 + √2)= (1 + √2)/[(1 - √2)(1 + √2)]
Given :-x = 1 - √2Therefore 1/x = 1/(1 - √2)By rationalizing, we get= 1/(1 - √2) × (1 + √2)/(1 + √2)= (1 + √2)/[(1 - √2)(1 + √2)]= (1 + √2)/[(1)² - (√2)²]
Given :-x = 1 - √2Therefore 1/x = 1/(1 - √2)By rationalizing, we get= 1/(1 - √2) × (1 + √2)/(1 + √2)= (1 + √2)/[(1 - √2)(1 + √2)]= (1 + √2)/[(1)² - (√2)²]= (1 + √2)/(1 - 2)
Given :-x = 1 - √2Therefore 1/x = 1/(1 - √2)By rationalizing, we get= 1/(1 - √2) × (1 + √2)/(1 + √2)= (1 + √2)/[(1 - √2)(1 + √2)]= (1 + √2)/[(1)² - (√2)²]= (1 + √2)/(1 - 2)= (1 + √2)/-1
Given :-x = 1 - √2Therefore 1/x = 1/(1 - √2)By rationalizing, we get= 1/(1 - √2) × (1 + √2)/(1 + √2)= (1 + √2)/[(1 - √2)(1 + √2)]= (1 + √2)/[(1)² - (√2)²]= (1 + √2)/(1 - 2)= (1 + √2)/-1= -(1 + √2)
Given :-x = 1 - √2Therefore 1/x = 1/(1 - √2)By rationalizing, we get= 1/(1 - √2) × (1 + √2)/(1 + √2)= (1 + √2)/[(1 - √2)(1 + √2)]= (1 + √2)/[(1)² - (√2)²]= (1 + √2)/(1 - 2)= (1 + √2)/-1= -(1 + √2)= -1 - √2
Given :-x = 1 - √2Therefore 1/x = 1/(1 - √2)By rationalizing, we get= 1/(1 - √2) × (1 + √2)/(1 + √2)= (1 + √2)/[(1 - √2)(1 + √2)]= (1 + √2)/[(1)² - (√2)²]= (1 + √2)/(1 - 2)= (1 + √2)/-1= -(1 + √2)= -1 - √2Hence, the value of x + 1/x :-
Given :-x = 1 - √2Therefore 1/x = 1/(1 - √2)By rationalizing, we get= 1/(1 - √2) × (1 + √2)/(1 + √2)= (1 + √2)/[(1 - √2)(1 + √2)]= (1 + √2)/[(1)² - (√2)²]= (1 + √2)/(1 - 2)= (1 + √2)/-1= -(1 + √2)= -1 - √2Hence, the value of x + 1/x :-= 1 - √2 + (-1 - √2)
Given :-x = 1 - √2Therefore 1/x = 1/(1 - √2)By rationalizing, we get= 1/(1 - √2) × (1 + √2)/(1 + √2)= (1 + √2)/[(1 - √2)(1 + √2)]= (1 + √2)/[(1)² - (√2)²]= (1 + √2)/(1 - 2)= (1 + √2)/-1= -(1 + √2)= -1 - √2Hence, the value of x + 1/x :-= 1 - √2 + (-1 - √2)= 1 - √2 - 1 - √2
Given :-x = 1 - √2Therefore 1/x = 1/(1 - √2)By rationalizing, we get= 1/(1 - √2) × (1 + √2)/(1 + √2)= (1 + √2)/[(1 - √2)(1 + √2)]= (1 + √2)/[(1)² - (√2)²]= (1 + √2)/(1 - 2)= (1 + √2)/-1= -(1 + √2)= -1 - √2Hence, the value of x + 1/x :-= 1 - √2 + (-1 - √2)= 1 - √2 - 1 - √2= -2√2 Final Answer!
Given :-x = 1 - √2Therefore 1/x = 1/(1 - √2)By rationalizing, we get= 1/(1 - √2) × (1 + √2)/(1 + √2)= (1 + √2)/[(1 - √2)(1 + √2)]= (1 + √2)/[(1)² - (√2)²]= (1 + √2)/(1 - 2)= (1 + √2)/-1= -(1 + √2)= -1 - √2Hence, the value of x + 1/x :-= 1 - √2 + (-1 - √2)= 1 - √2 - 1 - √2= -2√2 Final Answer!Identity used :-
Given :-x = 1 - √2Therefore 1/x = 1/(1 - √2)By rationalizing, we get= 1/(1 - √2) × (1 + √2)/(1 + √2)= (1 + √2)/[(1 - √2)(1 + √2)]= (1 + √2)/[(1)² - (√2)²]= (1 + √2)/(1 - 2)= (1 + √2)/-1= -(1 + √2)= -1 - √2Hence, the value of x + 1/x :-= 1 - √2 + (-1 - √2)= 1 - √2 - 1 - √2= -2√2 Final Answer!Identity used :-(a + b)² = a² + 2ab + b²
Given :-x = 1 - √2Therefore 1/x = 1/(1 - √2)By rationalizing, we get= 1/(1 - √2) × (1 + √2)/(1 + √2)= (1 + √2)/[(1 - √2)(1 + √2)]= (1 + √2)/[(1)² - (√2)²]= (1 + √2)/(1 - 2)= (1 + √2)/-1= -(1 + √2)= -1 - √2Hence, the value of x + 1/x :-= 1 - √2 + (-1 - √2)= 1 - √2 - 1 - √2= -2√2 Final Answer!Identity used :-(a + b)² = a² + 2ab + b²Proof :-
Given :-x = 1 - √2Therefore 1/x = 1/(1 - √2)By rationalizing, we get= 1/(1 - √2) × (1 + √2)/(1 + √2)= (1 + √2)/[(1 - √2)(1 + √2)]= (1 + √2)/[(1)² - (√2)²]= (1 + √2)/(1 - 2)= (1 + √2)/-1= -(1 + √2)= -1 - √2Hence, the value of x + 1/x :-= 1 - √2 + (-1 - √2)= 1 - √2 - 1 - √2= -2√2 Final Answer!Identity used :-(a + b)² = a² + 2ab + b²Proof :-= (a + b)(a + b)
Given :-x = 1 - √2Therefore 1/x = 1/(1 - √2)By rationalizing, we get= 1/(1 - √2) × (1 + √2)/(1 + √2)= (1 + √2)/[(1 - √2)(1 + √2)]= (1 + √2)/[(1)² - (√2)²]= (1 + √2)/(1 - 2)= (1 + √2)/-1= -(1 + √2)= -1 - √2Hence, the value of x + 1/x :-= 1 - √2 + (-1 - √2)= 1 - √2 - 1 - √2= -2√2 Final Answer!Identity used :-(a + b)² = a² + 2ab + b²Proof :-= (a + b)(a + b)= a(a + b) + b(a + b)
Given :-x = 1 - √2Therefore 1/x = 1/(1 - √2)By rationalizing, we get= 1/(1 - √2) × (1 + √2)/(1 + √2)= (1 + √2)/[(1 - √2)(1 + √2)]= (1 + √2)/[(1)² - (√2)²]= (1 + √2)/(1 - 2)= (1 + √2)/-1= -(1 + √2)= -1 - √2Hence, the value of x + 1/x :-= 1 - √2 + (-1 - √2)= 1 - √2 - 1 - √2= -2√2 Final Answer!Identity used :-(a + b)² = a² + 2ab + b²Proof :-= (a + b)(a + b)= a(a + b) + b(a + b)= a² + ab + ab + b²
Given :-x = 1 - √2Therefore 1/x = 1/(1 - √2)By rationalizing, we get= 1/(1 - √2) × (1 + √2)/(1 + √2)= (1 + √2)/[(1 - √2)(1 + √2)]= (1 + √2)/[(1)² - (√2)²]= (1 + √2)/(1 - 2)= (1 + √2)/-1= -(1 + √2)= -1 - √2Hence, the value of x + 1/x :-= 1 - √2 + (-1 - √2)= 1 - √2 - 1 - √2= -2√2 Final Answer!Identity used :-(a + b)² = a² + 2ab + b²Proof :-= (a + b)(a + b)= a(a + b) + b(a + b)= a² + ab + ab + b²= a² + 2ab + b²