Math, asked by sahelisalonbnl439, 2 months ago

If x=1+sin a/cos a then sin a equal
a.1-x^2/1+x^2
b.x^2-1/x^2+1
C.1+X/1-x
D.1-x/1+x

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \rm \: x =   \frac{1 +  \sin( \alpha ) }{ \cos( \alpha ) } \\

 \rm \: \implies x  \cos( \alpha ) =   1 +  \sin( \alpha ) \\

 \rm \: \implies \{ x  \cos( \alpha ) \}^{2}  = \{   1 +  \sin( \alpha ) \}^{2}  \\

 \rm \: \implies  x^{2}   \cos ^{2} ( \alpha ) =   1 +  \sin^{2} ( \alpha ) + 2 \sin( \alpha )   \\

 \rm \: \implies  x^{2}(1 -    \sin ^{2} ( \alpha ) )=   1 +  \sin^{2} ( \alpha ) + 2 \sin( \alpha )   \\

 \rm \: \implies  x^{2}-    {x}^{2}  \sin ^{2} ( \alpha ) =   1 +  \sin^{2} ( \alpha ) + 2 \sin( \alpha )   \\

 \rm \: \implies  -  x^{2} +    {x}^{2}  \sin ^{2} ( \alpha )  +  1 +  \sin^{2} ( \alpha ) + 2 \sin( \alpha ) = 0   \\

 \rm \: \implies     ( {x}^{2} + 1)  \sin ^{2} ( \alpha )  + 2 \sin( \alpha )  + (1 -  {x}^{2}) = 0   \\

 \implies \sin( \alpha )  =  \frac{ - 2 \pm \sqrt{( - 2)^{2}   +  4( {x}^{2}  + 1)( {x}^{2}  - 1)} }{2( {x}^{2} + 1) }  \\

 \implies \sin( \alpha )  =  \frac{ - 2 \pm \sqrt{4   +  4( {x}^{4}   - 1)} }{2( {x}^{2} + 1) }  \\

 \implies \sin( \alpha )  =  \frac{ - 2 \pm \sqrt{4   +  4{x}^{4}   - 4} }{2( {x}^{2} + 1) }  \\

 \implies \sin( \alpha )  =  \frac{ - 2 \pm \sqrt{  4{x}^{4}   } }{2( {x}^{2} + 1) }  \\

 \implies \sin( \alpha )  =  \frac{ - 2 \pm  2{x}^{ 2}    }{2( {x}^{2} + 1) }  \\

 \implies  \sin( \alpha )  =  \frac{ - 2  +   2{x}^{ 2}    }{2( {x}^{2} + 1) }\:  \: or \:  \:   \sin( \alpha )  =  \frac{ - 2   -   2{x}^{ 2}    }{2( {x}^{2} + 1) } \\

 \implies  \sin( \alpha )  =  \frac{2(   {x}^{ 2}   - 1)  }{2( {x}^{2} + 1) }\:  \: or \:  \:   \sin( \alpha )  =  \frac{ - 2 (1 +   {x}^{ 2}   ) }{2( {x}^{2} + 1) } \\

 \implies  \sin( \alpha )  =  \frac{(   {x}^{ 2}   - 1)  }{( {x}^{2} + 1) }\:  \: or \:  \:   \sin( \alpha )  =  \frac{ - 2  }{2} \\

 \implies  \sin( \alpha )  =  \frac{(   {x}^{ 2}   - 1)  }{( {x}^{2} + 1) }\:  \: or \:  \:   \sin( \alpha )  =  - 1 \\

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:x = \dfrac{1 + sina}{cosa}

On squaring both sides, we get

\rm :\longmapsto\: {x}^{2} = \dfrac{ {(1 + sina)}^{2} }{ {cos}^{2} a}

can be rewritten as

\rm :\longmapsto\:\dfrac{ {x}^{2} }{1}  = \dfrac{ {(1 + sina)}^{2} }{ {cos}^{2} a}

On applying Componendo and Dividendo, we get

\rm :\longmapsto\:\dfrac{ {x}^{2}  + 1}{ {x}^{2}  - 1}  = \dfrac{ {(1 + sina)}^{2} +  {cos}^{2} a }{ {(1 + sina)}^{2}   - {cos}^{2} a}

\rm :\longmapsto\:\dfrac{ {x}^{2}  + 1}{ {x}^{2}  - 1}  = \dfrac{1 +  {sin}^{2}a + 2sina +  {cos}^{2} a }{ 1 + {sin}^{2}a + 2sina   - {cos}^{2} a}

can be re-arranged as

\rm :\longmapsto\:\dfrac{ {x}^{2}  + 1}{ {x}^{2}  - 1}  = \dfrac{1 +  ({sin}^{2}a + {cos}^{2}a)   + 2sina }{ (1 -  {cos}^{2}a)  + {sin}^{2}a + 2sina}

We know,

\boxed{ \rm{  {sin}^{2}x +  {cos}^{2}x = 1}}

So, using this

\rm :\longmapsto\:\dfrac{ {x}^{2}  + 1}{ {x}^{2}  - 1}  = \dfrac{1 +  1+ 2sina }{  {sin}^{2}a  + {sin}^{2}a + 2sina}

\rm :\longmapsto\:\dfrac{ {x}^{2}  + 1}{ {x}^{2}  - 1}  = \dfrac{2+ 2sina }{2{sin}^{2}a + 2sina}

\rm :\longmapsto\:\dfrac{ {x}^{2}  + 1}{ {x}^{2}  - 1}  = \dfrac{2(1+ sina)}{2{sina}(sina + 1)}

\rm :\longmapsto\:\dfrac{ {x}^{2}  + 1}{ {x}^{2}  - 1}  = \dfrac{1}{sina}

\bf\implies \:sina = \dfrac{ {x}^{2}  - 1}{ {x}^{2}  + 1}

Hence, Option (b) is correct

Additional Information :-

\red{\rm :\longmapsto\:If \: \dfrac{a}{b}  = \dfrac{c}{d} , \: then}

\boxed{ \rm{  \frac{a}{c} =  \frac{b}{d} \: is \: called \: alternendo}}

\boxed{ \rm{  \frac{b}{a} =  \frac{d}{c} \: is \: called \: invertendo}}

\boxed{ \rm{  \frac{a + b}{b} =  \frac{c + d}{d} \: is \: called \: componendo}}

\boxed{ \rm{  \frac{a  -  b}{b} =  \frac{c  -  d}{d} \: is \: called \: dividendo}}

\boxed{ \rm{  \frac{a + b}{a - b} =  \frac{c + d}{c - d} \: is \: called \: componendo \: and \: dividendo}}

Similar questions