Math, asked by Aalyashin, 1 year ago

If x=1+sinA/cosA then prove that 1/x=1-sinA/cosA

Answers

Answered by flower161
5
x =2 * sin(a) / (1 + cos(a) + sin(a)) =2 * sin(a) * (1 - (cos(a) + sin(a)) / (1 - (cos(a) + sin(a))^2) =2 * sin(a) * (1 - cos(a) - sin(a)) / (1 - (cos(a)^2 + 2sin(a)cos(a) + sin(a)^2)) =2 * sin(a) * (1 - cos(a) - sin(a)) / (1 - (1 + 2sin(a)cos(a)) =2 * sin(a) * (1 - cos(a) - sin(a)) / (-2sin(a)cos(a)) =-(1 - cos(a) - sin(a)) / cos(a) =(cos(a) + sin(a) - 1) / cos(a) =cos(a)/cos(a) - (1 - sin(a)) / cos(a) =1 - (1 - sin(a)) / cos(a)cos(a) / (1 + sin(a)) =cos(a) * (1 - sin(a)) / (1 - sin(a)^2) =cos(a) * (1 - sin(a)) / cos(a)^2 =(1 - sin(a)) / cos(a)x = 1 - (1 - sin(a)) / cos(a))(1 - sin(a)) / cos(a)) = 1 - x

Aalyashin: thnk u
Answered by Anonymous
3
x =2 * sɪɴ(ᴀ) / (1 + ᴄᴏs(ᴀ) + sɪɴ(ᴀ)) =2 * sɪɴ(ᴀ) * (1 - (ᴄᴏs(ᴀ) + sɪɴ(ᴀ)) / (1 - (ᴄᴏs(ᴀ) + sɪɴ(ᴀ))^2) =2 * sɪɴ(ᴀ) * (1 - ᴄᴏs(ᴀ) - sɪɴ(ᴀ)) / (1 - (ᴄᴏs(ᴀ)^2 + 2sɪɴ(ᴀ)ᴄᴏs(ᴀ) + sɪɴ(ᴀ)^2)) =2 * sɪɴ(ᴀ) * (1 - ᴄᴏs(ᴀ) - sɪɴ(ᴀ)) / (1 - (1 + 2sɪɴ(ᴀ)ᴄᴏs(ᴀ)) =2 * sɪɴ(ᴀ) * (1 - ᴄᴏs(ᴀ) - sɪɴ(ᴀ)) / (-2sɪɴ(ᴀ)ᴄᴏs(ᴀ)) =-(1 - ᴄᴏs(ᴀ) - sɪɴ(ᴀ)) / ᴄᴏs(ᴀ) =(ᴄᴏs(ᴀ) + sɪɴ(ᴀ) - 1) / ᴄᴏs(ᴀ) =ᴄᴏs(ᴀ)/ᴄᴏs(ᴀ) - (1 - sɪɴ(ᴀ)) / ᴄᴏs(ᴀ) =1 - (1 - sɪɴ(ᴀ)) / ᴄᴏs(ᴀ)ᴄᴏs(ᴀ) / (1 + sɪɴ(ᴀ)) =ᴄᴏs(ᴀ) * (1 - sɪɴ(ᴀ)) / (1 - sɪɴ(ᴀ)^2) =ᴄᴏs(ᴀ) * (1 - sɪɴ(ᴀ)) / ᴄᴏs(ᴀ)^2 =(1 - sɪɴ(ᴀ)) / ᴄᴏs(ᴀ)x = 1 - (1 - sɪɴ(ᴀ)) / ᴄᴏs(ᴀ))(1 - sɪɴ(ᴀ)) / ᴄᴏs(ᴀ)) = 1 - x
Similar questions