Math, asked by loborylen98334, 10 months ago

if x=1/t and y=1-1/t find dy/dx

Answers

Answered by Sharad001
52

Question :-

 \tt \: if \:  \: x =  \frac{1}{t}  \:  \: and \: y = 1 -  \frac{1}{t}  \:  \: then \: find \\  \tt \frac{dy}{dx}

Answer :-

\to \large \boxed{ \tt \frac{dy}{dx}  =  - 1} \:

Solution :-

We have ,

 \to \tt x =  \frac{1}{t}  \\  \\  \red{\sf differentiate \: with \: respect \: to \: t \: } \\  \\  \to \tt \frac{dx}{dt}  =  \frac{d}{dt}  \frac{1}{t}  \\  \\  \to \tt  \frac{dx}{dt}  =  log(t)  \:  \:  ......\: eq.(1) \\  \\  \bf  \:  \: \green{and \: we \: have \: } \\  \\  \to \tt y = 1 -  \frac{1}{t}  \\  \\  \sf \pink{differentiate \: with \: respect \: to \: t} \\  \\  \to \tt \frac{dy}{dt}  = 0 -  \frac{d}{dt}  \:  \frac{1}{t}  \\  \\  \to \tt  \frac{dy}{dt}  =  -  log(t)  \:  ...... \: eq.(2) \\  \\  \sf \: Apply \implies \tt  \frac{eq.(2)}{eq.(1)}  \\  \\  \to \tt \frac{ \frac{dy}{dt} }{ \frac{dx}{dt} }  =  \frac{  log(t) }{ -  log(t) }  \\  \\  \to \tt \frac{dy}{dt}  \times  \frac{dt}{dx}  =  - 1 \\  \\  \to \boxed{ \tt \frac{dy}{dx}  =  - 1}

Similar questions