Math, asked by zeelu23, 1 year ago

if x=1-under root 2 find ( x -i/x)^3​

Answers

Answered by aadi7571
3

i hope this will help you.

Attachments:
Answered by Anonymous
1

 \rm{x = 1 -  \sqrt{2} }

 \rm{ \frac{1}{x}  =  \frac{1}{1 -  \sqrt{2} } }

 \rm{rationalise \: the \: denominator}

 \implies\rm{ \frac{1}{x}  =  \frac{1}{1 -  \sqrt{2} }  \times  \frac{1 +  \sqrt{2} }{1 +  \sqrt{2} } }

 \implies\rm{ \frac{1}{x}  =  \frac{1 +  \sqrt{2} }{ {1}^{2}  -  {(\sqrt{2})}^{2}  } }

 \implies\rm{ \frac{1}{x}  =  \frac{1 +  \sqrt{2} }{ 1 -  2 }}

 \implies \rm{ \frac{1}{x}  =  - (1 +  \sqrt{2} )}

 \rm{now \:x -  \frac{1}{x}  = 1 -  \sqrt{2}  -[  - 1 +  \sqrt{2}  }]

\rm{\:x -  \frac{1}{x}  = 1 -  \sqrt{2}   +  1 +  \sqrt{2}  }

\rm{\:x -  \frac{1}{x}  = 2  }

\rm{{(\:x -  \frac{1}{x} )}^{3}  =  {2}^{3}   }

 \fbox{\rm{{(\:x -  \frac{1}{x} )}^{3}  =  8   }}

Similar questions