Math, asked by himanshumandal793, 3 months ago

if x= 1+under root 2 then find the value of (x-1/x)raised to power 3​

Answers

Answered by fuusbwbkzkxk
1

Step-by-step explanation:

x=1+√2

 \frac{1}{x}  =  \frac{1}{1 +  \sqrt{2} }  \\  =  \frac{1}{1 +  \sqrt{2} }  \times  \frac{1 -  \sqrt{2} }{1 -  \sqrt{2} }

rationalising the denominator

  = \frac{1 -  \sqrt{2} }{{1}^{2}  - {( \sqrt{2})}^{2}  }

 \frac{1 -  \sqrt{2} }{1 - 2}

  = \frac{1 -  \sqrt{2} }{ - 1}  \\  =  - 1 \times (1 -  \sqrt{2} )

  = \sqrt{2}  - 1

  = \frac{1 -  \sqrt{2} }{ - 1}  \\  =  - 1 \times (1 -  \sqrt{2} )

x  -   \frac{1}{x}  =  \sqrt{2}   + 1 - ( \sqrt{2}  - 1) \\  =  \sqrt{2}  + 1 -  \sqrt{2}  + 1 \\  = 2

 {(x -  \frac{1}{x} )}^{3}  =  {2}^{3 }  = 8

Similar questions