Math, asked by kamlabhandariktmuk, 10 months ago

if X + 1 upon X = √2 then the value of x square + 1 upon X is​

Answers

Answered by Anonymous
1

\huge\mathfrak\blue{Answer:}

Given:

  • We have been given a expression

  • \sf{x + \dfrac{1}{x} = \sqrt{2}}

To Find:

  • We have to find the value of another expression given below

  • \sf{x^2 + \dfrac{1}{x^2}}

Solution:

We have been given given that

\boxed{\sf{x + \dfrac{1}{x} = \sqrt{2}}}

_____________________________

Squaring Both Sides of Equation we get

\implies \sf{ ( x + \dfrac{1}{x} ) ^2= (\sqrt{2})^2}

\boxed{\sf{(a+b)^2 = a^2 + b^2 + 2ab}}

\implies \sf{(x)^2 + { \left ( \dfrac{1}{x} \right ) }^2 + 2 \times x \times \dfrac{1}{x} = (\sqrt{2})^2}

\implies \sf{x^2 + \dfrac{1}{x^2} + 2 = 2}

\implies \sf{x^2 + \dfrac{1}{x^2} = 2 - 2}

\implies \sf{x^2 + \dfrac{1}{x^2} = 0 }

______________________________

\huge\underline{\sf{\red{A}\orange{n}\green{s}\pink{w}\blue{e}\purple{r}}}

\large\boxed{\sf{\red{ x^2 + \dfrac{1}{x^2} = 0 }}}

______________________________

\purple{\underline{\underline{\sf{Some \: Important \: Indentities : }}}}

\sf{(a+b)^2 =a^2 +b^2 +2ab}

\sf{(a-b)^2 = a^2 + b^2 - 2ab}

\sf{(a+b)^3 = a^3 + b^3 + 3ab(a+b)}

\sf{(a-b)^3 = a^3 - b^3 - 3ab(a-b)}

\sf{a^3 + b^3 = (a+b)(a^2 + b^2 - ab)}

\sf{a^3 - b^3 = (a-b)(a^2 + b^2 + ab)}

Similar questions