Math, asked by singhchikki987654321, 9 months ago

if x-1/x=1/3then find,x^3-1/x^3​

Answers

Answered by Anonymous
24

Answer:

{\sf{{\dfrac{19}{27}}}}

Step-by-step explanation:

Given : {\sf{\ \ x - {\dfrac{1}{x}} = {\dfrac{1}{3}} }}

To Find : {\sf{\ \ x^3 - {\dfrac{1}{x^3}}}}

Solution :

Squaring both sides of the given equation.

{\sf{\Rightarrow \Big( x - {\dfrac{1}{x}} \Big) ^2 = \Big( {\dfrac{1}{3}} \Big) ^2}}

{\boxed{\sf{\red{Identity \ : \ (a - b)^2 = a^2 + b^2 - 2ab}}}}

{\sf{\red{Here, \ a = x, \ b = {\dfrac{1}{x}} }}}

{\sf{\Rightarrow x^2 + {\dfrac{1}{x^2}} - 2.x.{\dfrac{1}{x}} = {\dfrac{1}{9}} }}

{\sf{\Rightarrow x^2 + {\dfrac{1}{x^2}} - 2.{\cancel{x}}.{\dfrac{1}{{\cancel{x}}}} = {\dfrac{1}{9}} }}

{\sf{\Rightarrow x^2 + {\dfrac{1}{x^2}} - 2 = {\dfrac{1}{9}} }}

{\sf{\Rightarrow x^2 + {\dfrac{1}{x^2}} = {\dfrac{1}{9}} + 2}}

{\sf{\Rightarrow x^2 + {\dfrac{1}{x^2}} = {\dfrac{1 + 18}{9}} }}

{\sf{\Rightarrow x^2 + {\dfrac{1}{x^2}} = {\dfrac{19}{9}} }}

Now,

{\boxed{\sf{\red{Identity \ : \ a^3 - b^3 = (a - b)(a^2 + b^2 + ab)}}}}

{\sf{\red{Here, \ a = x, \ b = {\dfrac{1}{x}} }}}

{\sf{\Rightarrow x^3 - {\dfrac{1}{x^3}} = \Big( x - {\dfrac{1}{x}} \Big) \Big( x^2 + {\dfrac{1}{x^2}} + x^2.{\dfrac{1}{x^2}} \Big) }}

{\sf{\Rightarrow x^3 - {\dfrac{1}{x^3}} = \Big( x - {\dfrac{1}{x}} \Big) \Big( x^2 + {\dfrac{1}{x^2}} + {\cancel{x^2}}.{\dfrac{1}{{\cancel{x^2}}}} \Big) }}

{\sf{\Rightarrow x^3 - {\dfrac{1}{x^3}} = \Big( x - {\dfrac{1}{x}} \Big) \Big( x^2 + {\dfrac{1}{x^2}} \Big) }}

Putting known values.

{\sf{\Rightarrow x^3 - {\dfrac{1}{x^3}} = \Big( {\dfrac{1}{3}}  \Big) \Big( {\dfrac{19}{9}} \Big) }}

{\sf{\green{\Rightarrow x^3 - {\dfrac{1}{x^3}} = {\dfrac{19}{27}} }}}

Similar questions