Math, asked by dscmajestic, 5 months ago

if x-1/x=1/54 the find the value of x+1/x

Attachments:

Answers

Answered by Arceus02
2

Given that,

x -  \dfrac{1}{x}  =  \dfrac{15}{4}

Squaring both sides,

 \longrightarrow  { \bigg(x -  \dfrac{1}{x} \bigg)}^{2}   =   { \bigg( \dfrac{15}{4} \bigg) }^{2}

Expanding L.H.S. using (a - b)² = a² + b² - 2ab with a = x and b = 1/x,

 \longrightarrow  {x}^{2} +  \dfrac{1}{ {x}^{2} } - 2 \bigg(x \times  \dfrac{1}{x} \bigg)   =  \dfrac{225}{16}

 \longrightarrow  {x}^{2} +  \dfrac{1}{ {x}^{2} } - 2 =  \dfrac{225}{16}

 \longrightarrow  {x}^{2} +  \dfrac{1}{ {x}^{2} }  =  \dfrac{225}{16}  + 2

 \longrightarrow  {x}^{2} +  \dfrac{1}{ {x}^{2} }  =  \dfrac{225 + 32}{16}

 \longrightarrow  {x}^{2} +  \dfrac{1}{ {x}^{2} }  =  \dfrac{257}{16} \quad \quad \dots(1)

\\

Now, we know that,

{ { \bigg(x +  \dfrac{1}{x} \bigg)}^{2}  =  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  + 2 \bigg(x \times  \dfrac{1}{x}  \bigg)}

  \longrightarrow { \bigg(x +  \dfrac{1}{x} \bigg)}^{2}  =  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  + 2

From (1),

  \longrightarrow { \bigg(x +  \dfrac{1}{x} \bigg)}^{2}  =   \dfrac{257}{16}   + 2

  \longrightarrow { \bigg(x +  \dfrac{1}{x} \bigg)}^{2}  =   \dfrac{257 + 32}{16}

  \longrightarrow { \bigg(x +  \dfrac{1}{x} \bigg)}^{2}  =   \dfrac{289}{16}

Taking square root on both sides,

  \longrightarrow  \sqrt{{ \bigg(x +  \dfrac{1}{x} \bigg)}^{2}}  =  \sqrt{  \dfrac{289}{16}  }

  \longrightarrow  \sqrt{{ \bigg(x +  \dfrac{1}{x} \bigg)}^{2}}  =  \sqrt{    { \bigg(\pm \dfrac{17}{4} \bigg) }^{2}  }

  \longrightarrow  x +  \dfrac{1}{x}   =   \pm  \dfrac{17}{4}

Hence,

  \longrightarrow  \underline{ \underline{ x +  \dfrac{1}{x}   =   \pm  \dfrac{17}{4} }}

Answered by prabhatpathak211
1

Step-by-step explanation:

plz mark me as a brainlist...

Attachments:
Similar questions