Math, asked by SANJAYDEEPAK14, 10 months ago

if x - 1/x = -1, find the value of x + 1/x​

Answers

Answered by kowshikpolisetty9
0

Step-by-step explanation:

the required answer is√5

Attachments:
Answered by Anonymous
44

\purple{\mathbb{ANSWER:-}}

\sf x -  \frac{1}{x}  =  - 1

\sf{(x -  \frac{1}{x} )}^{2}  =  {( - 1)}^{2}

 \sf{x}^{2}  +  \frac{1 }{{x}^{2} }  - 2 = 1

 \sf{x}^{2}  +  \frac{1 }{{x}^{2} }   =  1 + 2

\sf{x}^{2}  +  \frac{1 }{{x}^{2} }   = 3

\sf{(x +  \frac{1}{x} )}^{2}  =  {x}^{2}  +  \frac{1 }{{x}^{2} }   + 2

\sf{(x +  \frac{1}{x} )}^{2}  =  3   + 2

\sf{(x +  \frac{1}{x} )}^{2}  = 5

\sf x +  \frac{1}{x}  = \sqrt{5}

\sf ∴ x +  \frac{1}{x}  = ± \sqrt{5}

Similar questions