Math, asked by anjireddy4453, 9 months ago



If x +1/x = 1 find the value of xCube +1/xCube


Answers

Answered by BrainlyIAS
4

x³ + 1 / x³ = - 2

Given

\rm x+\dfrac{1}{x}=1

To Find

\rm x^3+\dfrac{1}{x^3}

Knowledge required

\bf \pink{\bigstar\ \; (a+b)^3=a^3+b^3+3ab(a+b)}

\bf \pink{\bigstar\ \; \left(x+\dfrac{1}{x}\right)^3=x^3+\dfrac{1}{x^3}+3.x.\dfrac{1}{x}\left(x+\dfrac{1}{x}\right)}

Solution

\rm x+\dfrac{1}{x}=1...(1)

Cubing on both sides , we get ,

\to \rm \left(x+\dfrac{1}{x}\right)^3=(1)^3\\\\\to \rm x^3+\dfrac{1}{x^3}+3.x.\dfrac{1}{x}\left(x+\dfrac{1}{x}\right)=1

\rm \to x^3+\dfrac{1}{x^3}+3(1)=1

∵ From (1)

\to \rm x^3+\dfrac{1}{x^3}+3=1\\\\\to \rm x^3+\dfrac{1}{x^3}=1-3\\\\\to \bf \green{x^3+\dfrac{1}{x^3}=-2\ \bigstar}

Answered by amankumaraman11
3

Given,

 \boxed{ \rm{x +  \frac{1}{x} = 1 }}

To find : x³ + 1/x³ = ?

Here,

 \bf{}x +  \frac{1}{x}  = 1 \\  \small \boxed{ \rm{cubing \:  \: both \:  \: sides}} \\ \bf \to  { \bigg(x +  \frac{1}{x} \bigg )}^{3}  =  {(1)}^{3}

  • Identity Required : (a+b)³=a³+b³+3ab(a+b)

 \small \bf \to {(x)}^{3}  + \frac{1}{ {(x)}^{3} }  + 3 \bigg(  \cancel{x}\bigg) \bigg(  \frac{1}{\cancel{x}} \bigg)  \bigg\{  x+  \frac{1}{x}  \bigg\} = 1 \\  \\  \small \bf \to {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3\bigg\{  x+  \frac{1}{x}  \bigg\}  = 1 \\ \\   \small \bf \to {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3(1) = 1 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \big\{  \because \:    \:  x +  \frac{1}{x}   =  1\big\}  \\ \\ \small \bf \to {x}^{3}   +  \frac{1}{ {x}^{3} }  +  3 = 1 \\ \\  \small \bf \to {x}^{3}  +  \frac{1}{ {x}^{3} }  = 1 - 3 \\  \\   \bf \to{x}^{3}  +  \frac{1}{ {x}^{3} }  =    \: \red{- 2}

Hence,

  • x³ + 1/x³ = - 2
Similar questions