if x + 1/x = 1 find, x¹⁵ + x¹² + x⁹ + x⁶ + x³ + 1
Answers
Answered by
6
Given that,
which shares the roots to the cubic equation
Hence,
Answered by
0
Step-by-step explanation:
Given that,
\rm{x+\dfrac{1}{x}=1}x+
x
1
=1
\rm{x^{2}-x+1=0}x
2
−x+1=0
which shares the roots to the cubic equation
\rm{(x+1)(x^{2}-x+1)=0}(x+1)(x
2
−x+1)=0
\rm{x^{3}+1=0}x
3
+1=0
\rm{\therefore x^{3}=-1}∴x
3
=−1
Hence,
\small\rm{$x^{15}+x^{12}+x^{9}+x^{6}+x^{3}+1=(-1)^{5}+(-1)^{4}+(-1)^{3}+(-1)^{2}+(-1)^{1}+1$}
\rm{\therefore x^{15}+x^{12}+x^{9}+x^{6}+x^{3}+1=0}∴x
15
+x
12
+x
9
+x
6
+x
3
+1=0
Similar questions