Math, asked by dipanjan619, 1 month ago

if x+(1/x) =1 then find the value of x^29+(1/x^89) ​

Answers

Answered by manjotsinghsidhu671
0

Answer:

x2+x−1=0⇒ x = 0 does not satisfy the equation.

⇒x2+x−1x=0, x ≠ 0

⇒x+1−1x=0

⇒x−1x=−1

Squaring,x2+1x2−2⋅x⋅1x=1

⇒x2+1x2=1+2=3

Squaring,x4+1x4+2⋅x2⋅1x2=32=9

⇒x4+1x4=9−2=7

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:x + \dfrac{1}{x}  = 1

\rm :\longmapsto\: \dfrac{ {x}^{2}  + 1}{x}  = 1

\rm :\longmapsto\: {x}^{2} + 1 = x

\rm :\longmapsto\: {x}^{2} - x + 1 = 0

Its a quadratic in x, so using Quadratic Formula, we have

\rm :\longmapsto\:x = \dfrac{ - ( - 1) \:  \pm \:  \sqrt{ {( - 1)}^{2}  - 4(1)(1)} }{2(1)}

\rm :\longmapsto\:x = \dfrac{ 1\:  \pm \:  \sqrt{ {1 - 4}} }{2}

\rm :\longmapsto\:x = \dfrac{ 1\:  \pm \:  \sqrt{ { - 3}} }{2}

\rm :\longmapsto\:x = \dfrac{ 1\:  \pm \:  \sqrt{ {3}} \: i }{2}

So,

can have values,

\rm :\longmapsto\:x = \dfrac{ 1\: +  \:  \sqrt{ {3}} \: i }{2}  \: or \: \dfrac{ 1\:  -   \:  \sqrt{ {3}} \: i }{2}

We know that,

\rm :\longmapsto\: \omega \:  = \dfrac{ -  1\: +  \:  \sqrt{ {3}} \: i }{2}  \: \\  \\ \rm :\longmapsto\:  {\omega}^{2} =  \: \dfrac{  - 1\:  -   \:  \sqrt{ {3}} \: i }{2}

So,

values of x can be rewritten as

\rm :\longmapsto\:x = \dfrac{ - ( -  1\:  -   \:  \sqrt{ {3}} \: i )}{2}  \: or \: \dfrac{ - ( -  1\:  +    \:  \sqrt{ {3}} \: i) }{2}

So,

\bf\implies \:x =  -  {\omega}^{2}  \:  \: or \:  -  \: \omega

Now,

\rm :\longmapsto\: - \omega -  {\omega}^{2}  = 1

\rm :\longmapsto\:( - \omega)( -  {\omega}^{2} ) =  {\omega}^{3} = 1

Case :- 1

 \boxed{\rm :\longmapsto\:When \: x \:  =  \:  -  \: \omega}

Consider,

\rm :\longmapsto\: {x}^{29}  + \dfrac{1}{ {x}^{89} }

\rm \:  =  \:  \:  {( - \omega)}^{29} + \dfrac{1}{ {( - \omega)}^{89} }

\rm \:  =  \:  \:  -  {(\omega)}^{29}  -  \dfrac{1}{ {(\omega)}^{89} }

\rm \:  =  \:  \:  -  {(\omega)}^{2}  -  \dfrac{1}{ {(\omega)}^{2} }

\rm \:  =  \:  \:  -  {(\omega)}^{2}  -  \omega

\rm \:  =  \:  \: 1

Hence,

 \boxed{\bf :\longmapsto\: {x}^{29}  + \dfrac{1}{ {x}^{89} }  = 1}

Case :- 2

 \boxed{\rm :\longmapsto\:When \: x \:  =  \:  -  \: \omega \: ^{2} }

Consider,

\rm :\longmapsto\: {x}^{29}  + \dfrac{1}{ {x}^{89} }

\rm \:  =  \:  \:  {( - \omega)}^{58} + \dfrac{1}{ {( - \omega)}^{178} }

\rm \:  =  \:  \:   - {(\omega)}^{58} -  \dfrac{1}{ {( \omega)}^{178} }

\rm \:  =  \:  \: -   {( \omega)}^{1}  -  \dfrac{1}{ {(\omega)}^{1} }

\rm \:  =  \:  \:  - \omega -  {\omega}^{2}

\rm \:  =  \:  \: 1

Hence,

 \boxed{\bf :\longmapsto\: {x}^{29}  + \dfrac{1}{ {x}^{89} }  = 1}

Similar questions