Math, asked by ashishshyamj, 9 months ago

if (x-1)(x+1)(x-2)^2(e^3x-1)/(π^x-1)(3-x)^3(x-1)^2(x+3) <=0,then complete solution set of values of x is

Answers

Answered by shadowsabers03
28

We are given the inequality,

\longrightarrow\sf{\dfrac{(x-1)(x+1)(x-2)^2(e^{3x}-1)}{(\pi^x-1)(3-x)^3(x-1)^2(x+3)}\leq0}

\longrightarrow\sf{\dfrac{(x+1)(x-2)^2(e^{3x}-1)}{(\pi^x-1)(3-x)^3(x-1)(x+3)}\leq0}

Here the denominator should be non-zero. By this we get the following.

  • \sf{\pi^x-1\neq0\quad\implies\quad x\neq0}

  • \sf{(3-x)^3\neq0\quad\implies\quad x\neq3}

  • \sf{x-1\neq0\quad\implies\quad x\neq1}

  • \sf{x+3\neq0\quad\implies\quad x\neq-3}

On considering the equality we have,

  • \sf{x+1=0\quad\implies\quad x=-1}

  • \sf{(x-2)^2=0\quad\implies\quad x=2}

Since \sf{x\neq0,\ e^{3x}-1\neq0.}

Consider the number line given below.

\setlength{\unitlength}{1cm}\begin{picture}(5,5)\put(0,0){\vector(-1,0){6}}\put(0,0){\vector(1,0){6}}\multiput(-5,0)(1,0){11}{\circle*{0.1}}\multiput(-1,-0.1)(3,0){2}{\line(0,1){0.2}}\put(-3.3,-0.4){$\sf{-3}$}\put(-1.3,-0.4){$\sf{-1}$}\put(-0.08,-0.4){$\sf{0}$}\put(0.92,-0.4){$\sf{1}$}\put(1.92,-0.4){$\sf{2}$}\put(2.92,-0.4){$\sf{3}$}\put(5.8,-0.4){$\sf{x}$}\end{picture}

Let \sf{f(x)=\dfrac{(x+1)(x-2)^2(e^{3x}-1)}{(\pi^x-1)(3-x)^3(x-1)(x+3)}.}

As the term \sf{(3-x)^3} is in \sf{f(x),} it has a value less than 0 for \sf{x\ \textgreater\ 3} though other terms are positive. Thus \sf{f(x)\ \textless\ 0} for \sf{x\in(3,\ \infty).}

Since the exponent of \sf{(3-x)^3} is odd, sign of \sf{f(x)} changes at \sf{x=3.} Hence \sf{f(x)\ \textgreater\ 0} for \sf{x\in(2,\ 3).}

Exponent of \sf{(x-2)^2} is even so there's no sign change for \sf{f(x)} at \sf{x=2.} Hence \sf{f(x)\ \textgreater\ 0} for \sf{x\in(1,\ 2).}

Exponent of \sf{x-1} is odd so sign changes occurs at \sf{x=1.} Hence \sf{f(x)\ \textless\ 0} for \sf{x\in(0,\ 1).}

There are two (even) terms in \sf{f(x)} which has the value 0 for \sf{x=0;\ e^{3x}-1} and \sf{\pi^x-1.} Thus no sign change occurs at \sf{x=0.} Hence \sf{f(x)\ \textless\ 0} at \sf{x\in(-1,\ 1).}

Exponent of \sf{x+1} is odd so sign of \sf{f(x)} changes at \sf{x=-1.} Hence \sf{f(x)\ \textgreater\ 0} for \sf{x\in(-3,\ -1).}

Exponent of \sf{x+3} is also odd so sign changes occurs at \sf{x=-3.} Hence \sf{f(x)\ \textless\ 0} for \sf{x\in(-\infty,\ -3).}

Finally, sign of \sf{f(x)} with \sf{x} appears as the following:

\setlength{\unitlength}{1cm}\begin{picture}(5,5)\put(0,0){\vector(-1,0){6}}\put(0,0){\vector(1,0){6}}\multiput(-5,0)(1,0){11}{\circle*{0.1}}\put(-3.3,-0.4){$\sf{-3}$}\put(-1.3,-0.4){$\sf{-1}$}\put(-0.08,-0.4){$\sf{0}$}\put(0.92,-0.4){$\sf{1}$}\put(1.92,-0.4){$\sf{2}$}\put(2.92,-0.4){$\sf{3}$}\put(3.36,0.2){$-$}\put(2.36,0.2){$+$}\put(1.36,0.2){$+$}\put(0.36,0.2){$-$}\put(-0.64,0.2){$-$}\put(-2.14,0.2){$+$}\put(-3.64,0.2){$-$}\multiput(-1,-0.1)(3,0){2}{\line(0,1){0.2}}\put(5.8,-0.4){$\sf{x}$}\end{picture}

Hence the complete solution set of values of \sf{x} for our inequality is,

\longrightarrow\large\text{$\underline{\underline{\sf{x\in(-\infty,\ -3)\cup[-1,\ 0)\cup(0,\ 1)\cup\{2\}\cup(3,\ \infty)}}}$}

Similar questions