Math, asked by wwwalison8888a, 1 year ago

If x+1/x = 10/3,find the value of x cube -1/x cube


wwwalison8888a: I will mark as brainliest...

Answers

Answered by santhosi2003p61wvw
105
x +1/x=10/3 (LCM= x)

⇒x² +1=10x/3
⇒3x² -10x +3=0
⇒3x² - x -9x +3
⇒x(3x-1) -3(3x-1)
After factorising, you get x=3/ x=1/3

Substituting 3 in x³ + 1/ x³
⇒(3)³ -1/(3)³
⇒27 -1/27 = 729 -1/27
⇒728/27

Substituting 1/3
⇒(1/3)³ -(1/1/3)³
⇒1/27 -  27
⇒1-729/27
=-728/27

wwwalison8888a: Found very helpful...thanks dude
wwwalison8888a: Hey can you solve this using expansion....
wwwalison8888a: ???
santhosi2003p61wvw: (A)cube -(b)cube thingy?
wwwalison8888a: I mean like...(x -1/x)whole cube=a cube-b cube -3ab(a-b).. dis formula...
wwwalison8888a: Or something like that.....
wwwalison8888a: Plz help me out....
santhosi2003p61wvw: Hehe.... Really sorry...
wwwalison8888a: And plz explain how did you got the value of x as 3
santhosi2003p61wvw: I factorised p(X)
Answered by Swarup1998
4

x^{3}-\dfrac{1}{x^{3}}=26\dfrac{26}{27}

Tips:

Before we solve this problem, let us know some algebraic identities:

  • a^{3}-b^{3}=(a-b)^{3}+3ab(a-b)

  • (a-b)^{2}=(a+b)^{2}-4ab

  • (a-b)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}

Step-by-step explanation:

Given, x+\dfrac{1}{x}=\dfrac{10}{3}

Here, x-\dfrac{1}{x}

=\sqrt{(x+\dfrac{1}{x})^{2}-4\times x\times \dfrac{1}{x}}

Tip. Taking only the positive value of x-\dfrac{1}{x}

=\sqrt{(\dfrac{10}{3})^{2}-4}

=\sqrt{\dfrac{100}{9}-4}

=\sqrt{\dfrac{64}{9}}

=\dfrac{8}{3}

Now, x^{3}-\dfrac{1}{x^{3}}

=(x-\dfrac{1}{x})^{3}+3\times x\times \dfrac{1}{x} \times (x-\dfrac{1}{x})

=(\dfrac{8}{3})^{3}+3\times\dfrac{8}{3}

=\dfrac{512}{27}+8

=\dfrac{512+216}{27}

=\dfrac{728}{27}

=26\dfrac{26}{27}

NOTE:

You can also take: x-\dfrac{1}{x}=-\dfrac{8}{3} and find the value of x^{3}-\dfrac{1}{x^{3}}

#SPJ3

Similar questions