Math, asked by parnikabansal2901, 5 months ago

if x-1/x=10 find the value of (x+1/x)^2

Answers

Answered by jadu91
0

.

x -  \frac{1}{x}  = 10 \\  =  > (x -  \frac{1}{x} ) {}^{2}  = 100 \\  =  > x {}^{2}  - 2 +  \frac{1}{x {}^{2} }  = 100 \\  =  > x {}^{2}  +  \frac{1}{x {}^{2} }  = 102 \\ now \\ (x +  \frac{1}{x} ) {}^{2}  = x {}^{2}  + 2 +  \frac{1}{x {}^{2} }  {}^{}  \\ x {}^{2}  +  \frac{1}{x {}^{2} }  + 2 \\  = 102 + 2 \\  = 104

Answered by Anonymous
4

Question :

If \bf{x - \dfrac{1}{x} = 10} , find the value of \bf{\bigg(x + \dfrac{1}{x}\bigg)^{2}}

Given :

\bf{x - \dfrac{1}{x} = 10}

To find :

The value of \bf{\bigg(x + \dfrac{1}{x}\bigg)^{2}}.

Solution :

On squaring the Equation \bf{x - \dfrac{1}{x} = 10} , we get :

:\implies \bf{\bigg(x - \dfrac{1}{x}\bigg)^{2} = 10^{2}} \\ \\ \\

:\implies \bf{\bigg(x - \dfrac{1}{x}\bigg)^{2} = 100} \\ \\ \\

Using the identity,

⠀⠀⠀⠀⠀⠀(a - b)² = a² + b² - 2ab

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀We get :

:\implies \bf{x^{2} + \dfrac{1}{x^{2}} - 2 \times x \times \dfrac{1}{x} = 100} \\ \\ \\

:\implies \bf{x^{2} + \dfrac{1}{x^{2}} - 2 \times \not{x} \times \dfrac{1}{\not{x}} = 100} \\ \\ \\

:\implies \bf{x^{2} + \dfrac{1}{x^{2}} - 2 = 100} \\ \\ \\

:\implies \bf{x^{2} + \dfrac{1}{x^{2}} = 100 + 2} \\ \\ \\

:\implies \bf{x^{2} + \dfrac{1}{x^{2}} = 102} \\ \\ \\

Now using the identity ,

⠀⠀⠀⠀⠀⠀a² + b² = (a + b)² - 2ab

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀We get :

:\implies \bf{\bigg(x^{2} + \dfrac{1}{x}\bigg)^{2} - 2 \times x \times \dfrac{1}{x} = 102} \\ \\ \\

:\implies \bf{\bigg(x^{2} + \dfrac{1}{x}\bigg)^{2} - 2 \times \not{x} \times \dfrac{1}{\not{x}} = 102} \\ \\ \\

:\implies \bf{\bigg(x^{2} + \dfrac{1}{x}\bigg)^{2} - 2 = 102} \\ \\ \\

:\implies \bf{\bigg(x^{2} + \dfrac{1}{x}\bigg)^{2} = 102 + 2} \\ \\ \\

:\implies \bf{\bigg(x^{2} + \dfrac{1}{x}\bigg)^{2} = 104} \\ \\ \\

\boxed{\therefore \bf{\bigg(x^{2} + \dfrac{1}{x}\bigg)^{2} = 104}} \\ \\

Hence, the value of \bf{\bigg(x + \dfrac{1}{x}\bigg)^{2}} is 104.

Similar questions