Math, asked by gopikaharilal170, 3 months ago

if x + 1/x =10 find the value of x² + 1/x²​

Answers

Answered by guptavishrut
1

Answer:

98 is your answer

Step-by-step explanation:

x+1/x=10

we have to find the value of x²+1/x²

(x+1/x)²=x²+1/x²+2*x*1/x  {(a+b)²=a²+b²+2ab}

=(10)²=x²+1/x²+2

=100=x²+1/x²+2

=100-2=x²+1/x²

98=x²+1/x²

pls mark me as brainliest

Answered by Anonymous
9

Answer:

Explanation:

Given :

  • x + 1/x = 10

To Find :

  • The value of x² + 1/x².

Solution :

 \rm \to \bigg( x +  \cfrac{1}{x}  \bigg) = 10 \\  \\ \rm [ Squaring  \:  \: on   \: \: both  \:  \: sides ] \\  \\  \rm \to \:  \bigg(x +  \cfrac{1}{x}  \bigg) {}^{2}  = 10 {}^{2}  \\  \\  \because  \boxed{ \rm \red{(a + b) {}^{2}  = a {}^{2}  + 2ab + b {}^{2} }} \\  \\  \rm \to \:  \bigg(x {}^{2}  + 2 \times x \times  \cfrac{1}{x}  +  (\cfrac{1}{x} ) {}^{2}  \bigg) = 100 \\  \\  \rm \to \:  \bigg(x {}^{2}  + 2 \times \not{ x} \times  \cfrac{1}{ \not{x}}  +  (\cfrac{1}{ x} ) {}^{2}  \bigg) = 100 \\  \\  \rm \to \:  \bigg( x {}^{2} + 2 \times 1 +  \cfrac{1 {}^{2} }{x {}^{2} }  \bigg) = 100 \\  \\  \rm \to \:  \bigg( x {}^{2} +  \cfrac{1}{x {}^{2} }  \bigg) = 100 - 2 \\  \\  \green{ \rm \to \:  \bigg(x {}^{2} +  \cfrac{1}{x {}^{2} }   \bigg) = 98}

Hence :

The value of x² + 1/x² is 98.

Similar questions