Math, asked by sahumanoj28351, 9 months ago

if x+1\x =11 find the value of x^2+1\x^2​

Answers

Answered by CharmingPrince
20

\huge{\bigstar}{ \green{ \mathfrak{ \underline{ \underline{Question}}}}}{\bigstar}

□☆□☆□☆□☆□☆□☆□☆□☆□☆□☆□☆

If \ \left( x+ \displaystyle{\frac{1}{x}} \right) =11\ find\ the\  \ value\ of\\ \left( x^2 + \displaystyle{\frac{1}{x^2}}\right)

□☆□☆□☆□☆□☆□☆□☆□☆□☆□☆□☆

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

\huge{\bigstar}{ \green{ \mathfrak{ \underline{ \underline{Answer}}}}}{\bigstar}

\boxed{\red{\bold{Given:}}}

\purple{\implies \left( x+ \displaystyle{\frac{1}{x}} \right)= 11}

\boxed{\red{\bold{Squaring\ both \ sides:}}}

\green{\implies \left( x+ \displaystyle{\frac{1}{x}} \right)^2 = (11)^2}

\green{\implies}x^2 + \displaystyle{\frac{1}{x^2}} + 2 × x × \frac{1}{x} = 121

\blue{(\because By \ identity \ (a+b)^2 = a^2 + b^2 + 2ab)}

\green{\implies}x^2 + \displaystyle{\frac{1}{x^2}} + 2 = 121

\green{\implies}x^2 + \displaystyle{\frac{1}{x^2}} = 121 - 2

\green{\boxed{\implies{\boxed{x^2 + \displaystyle{\frac{1}{x^2}} = 119}}}}

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

Similar questions