Math, asked by Anonymous, 1 month ago

If x + 1/x = 11, find the value of x⁴ + 1/x⁴.​

Answers

Answered by ItzOggy69
2

Putting 11 on x

Then,

 {11}^{2} +  { \frac{1}{11} }^{4}

So,

 \frac{121}{1}  +  \frac{1}{14641}

Next,

 \frac{1771561 + 1}{14641}

Next,

 \frac{1771562 }{14641}

Next,

Answer:- 121

Hopes it helpful for u

Answered by NITESH761
3

Answer:

here is your solution

Step-by-step explanation:

\large\mathsf{ x+ \frac{1}{x} = 11 }

\large\mathsf{ (x+ \frac{1}{x} )^2 = 11^2 }

square on both sides,

\large\mathsf{ (x^2 + 2×x× \frac{1}{x} = 121 }

\large\mathsf{ x^2 + 2× \cancel{x}  \times \frac{1}{\cancel{x}} = 121 }

\large\mathsf{ x^2 = 121-2 }

\large\mathsf{ x^2 = 119 }

\large\mathsf{ x^4= 119^2 }

\large\mathsf{ \frac{1}{x^4} = \frac{1}{119^2} }

\large\mathsf{ x^4 + \frac{1}{x^4} =  }

\large\mathsf{ 14161 + \frac{1}{14161} }

Solve this you will get your answer.

Similar questions