if x+1/x=11 find the value of x⁴+1/x⁴
Plz answer fast
Answers
Answered by
2
Given:
x + (1/x) = 11
(a + b)^4 = a^4 + 4*a^3*b + 6*a^2*b^2 + 4*a*b^3 + b^4
Rearranging the above equation, we get
a^4 + b^4 = (a + b)^4 - 4*a^3*b - 4*a*b^3 - 6*a^2*b^2
a^4 + b^4 = (a + b)^4 - 4*a*b(a^2 + b^2) - 6*a^2*b^2
a^4 + b^4 = (a + b)^4 - 4*a*b((a + b)^2 -2*a*b) - 6*a^2*b^2
Since (a^2 + b^2) = ((a + b)^2 -2*a*b)
a^4 + b^4 = (a + b)^4 - 4*a*b(a + b)^2 + 8*a^2*b^2 - 6*a^2*b^2
a^4 + b^4 = (a + b)^4 - 4*a*b(a + b)^2 + 8*a^2*b^2 - 6*a^2*b^2
a^4 + b^4 = (a + b)^4 - 4*a*b(a + b)^2 + 2*a^2*b^2
Let a = x & b = 1/x
x^4 + (1/x)^4 = (x + (1/x))^4 - 4*x*(1/x)*(x + (1/x))^2 + 2*x^2*(1/x)^2
x^4 + (1/x)^4 = (x + (1/x))^4 - 4*(x + (1/x))^2 + 2
Substituting x + (1/x) = 11 in the above equation, we get
x^4 + (1/x)^4 = 11^4 - 4*11^2 + 2
x^4 + (1/x)^4 = 14641 - 428 + 2
x^4 + (1/x)^4 = 14215 ——> Answer
x + (1/x) = 11
(a + b)^4 = a^4 + 4*a^3*b + 6*a^2*b^2 + 4*a*b^3 + b^4
Rearranging the above equation, we get
a^4 + b^4 = (a + b)^4 - 4*a^3*b - 4*a*b^3 - 6*a^2*b^2
a^4 + b^4 = (a + b)^4 - 4*a*b(a^2 + b^2) - 6*a^2*b^2
a^4 + b^4 = (a + b)^4 - 4*a*b((a + b)^2 -2*a*b) - 6*a^2*b^2
Since (a^2 + b^2) = ((a + b)^2 -2*a*b)
a^4 + b^4 = (a + b)^4 - 4*a*b(a + b)^2 + 8*a^2*b^2 - 6*a^2*b^2
a^4 + b^4 = (a + b)^4 - 4*a*b(a + b)^2 + 8*a^2*b^2 - 6*a^2*b^2
a^4 + b^4 = (a + b)^4 - 4*a*b(a + b)^2 + 2*a^2*b^2
Let a = x & b = 1/x
x^4 + (1/x)^4 = (x + (1/x))^4 - 4*x*(1/x)*(x + (1/x))^2 + 2*x^2*(1/x)^2
x^4 + (1/x)^4 = (x + (1/x))^4 - 4*(x + (1/x))^2 + 2
Substituting x + (1/x) = 11 in the above equation, we get
x^4 + (1/x)^4 = 11^4 - 4*11^2 + 2
x^4 + (1/x)^4 = 14641 - 428 + 2
x^4 + (1/x)^4 = 14215 ——> Answer
Similar questions
Computer Science,
5 months ago
Chemistry,
5 months ago
Social Sciences,
11 months ago
Math,
11 months ago
Physics,
1 year ago
English,
1 year ago