If ( x + 1/x ) = 13 and x > 0, find the value of ( x³ + 1/x³).
Answers
Answered by
6
EXPLANATION.
⇒ (x + 1/x) = 13.
As we know that,
Formula of :
⇒ (x + y)³ = x³ + 3x²y + 3xy² + y³.
Using this formula in the equation, we get.
Cubing on both sides of the equation, we get.
⇒ (x + 1/x)³ = (13)³.
⇒ (x)³ + 3(x)²(1/x) + 3(x)(1/x)² + (1/x)³ = (13)³.
⇒ x³ + 3x + 3/x + 1/x³ = 2197.
⇒ x³ + 3(x + 1/x) + 1/x³ = 2197.
Put the values of (x + 1/x) = 13 in the equation, we get.
⇒ x³ + 3(13) + 1/x³ = 2197.
⇒ x³ + 1/x³ + 39 = 2197.
⇒ x³ + 1/x³ = 2197 - 39.
⇒ x³ + 1/x³ = 2158.
Similar questions