Math, asked by bantivalavala8328, 5 hours ago

if x-1/x =16, then, what is x2 + 1/x2

Answers

Answered by senboni123456
2

Answer:

Step-by-step explanation:

We have,

\tt{x-\dfrac{1}{x}=16}

\tt{\implies\,\left(x-\dfrac{1}{x}\right)^2=(16)^2}

\tt{\implies\,x^2+\dfrac{1}{x^2}-2\cdot\,x\cdot\dfrac{1}{x}=256}

\tt{\implies\,x^2+\dfrac{1}{x^2}-2=256}

\tt{\implies\,x^2+\dfrac{1}{x^2}=256+2}

\tt{\implies\,x^2+\dfrac{1}{x^2}=258}

Answered by NITESH761
0

Answer:

258

Step-by-step explanation:

We have,

\bigg( x-\dfrac{1}{x} \bigg) =16

square on both sides,

\bigg( x-\dfrac{1}{x} \bigg)^2 =16^2

x^2 +\bigg( \dfrac{1}{x} \bigg)^2 - 2·x· \dfrac{1}{x} = 256

x^2 +\bigg( \dfrac{1}{x} \bigg)^2 - 2·\cancel{x}· \dfrac{1}{\cancel{x}} = 256

x^2 + \dfrac{1}{x^2}  -2 = 256

x^2 + \dfrac{1}{x^2}  = 256+2

x^2 + \dfrac{1}{x^2}  = 258

Similar questions