if (x+1/x)^2=3 find the value of x^3+1/x^3
Answers
Answered by
1
Step-by-step explanation:
Given:-
(x+1/x)^2=3
To find:-
(x+1/x)^2=3 find the value of x^3+1/x^3 ?
Solution:-
Given that
(x+1/x)^2=3 ----------(1)
This is in the form of (a+b)^2
where a = x and b = 1/x
(a+b)^2 = a^2+2ab+b^2
=>x^2+2(x)(1/x)=(1/x^2) = 3
=>x^2+2+(1/x^2) = 3
=>x^2+(1/x^2)=3-2
=>x^2+(1/x^2) = 1 ---------(2)
and from (1)
x+(1/x)=√3------------(3)
We know that
(a+b)^3 = a^3+b^3+3ab(a+b)
a^3+b^3 = (a+b)^3-3ab(a+b)
Now,
x^3+(1/x^3)
=>[x+(1/x)]^3-3(x)(1/x)[x+(1/x)]
=>[x+(1/x)]^3-3(1)[x+(1/x)]
=>[x+(1/x)]^3-3[x+(1/x)]
=>(√3)^3-3(√3)
=>(√3×√3×√3)-(3√3)
=>(3√3)-(3√3)
=>0
x^3+(1/x^3) = 0
Answer:-
The value of x^3+(1/x^3) for the given problem is 0
Used formulae:-
- (a+b)^2 = a^2+2ab+b^2
- (a+b)^3 = a^3+b^3+3ab(a+b)
- a^3+b^3 = (a+b)^3-3ab(a+b)
Similar questions