Math, asked by pgowthamreddy04, 10 months ago

if [x+1/x]^2 = 3 , show that [x ^3+1/x^3]=0

Answers

Answered by BrainlyTornado
2

 {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 = 3 \\  {x}^{2}  +  \frac{1}{ {x}^{2} } = 1 \\ ({x}^{2}  +  \frac{1}{ {x}^{2} })(x +  \frac{1}{x} ) = 1 \times  \sqrt{3}  \\ {x}^{3}  +  \frac{1}{ {x}^{3} } + x +  \frac{1}{x}  =  \sqrt{3}  \\ {x}^{3}  +  \frac{1}{ {x}^{3} } +  \sqrt{3}  =  \sqrt{3} \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  = 0

Similar questions