if (x+1/x^2)=6, find the values of
(i) (x-1/x)
(ii) (x^2 - 1/x^2)
Answers
Solution -
Given :
(x+1/x)² = 6
> x² + 1/x² + 2(x)(1/x) = 6
> x² + 1/x² + 2 = 6
> x² + 1/x² = 4
Subtracting 2 both sides
> x² + 1/x² - 2 = 4-2 = 2
> ( x² + 1/x² - 2(x)(1/x)) = 2
> ( x - 1/x)² = 2
> (x-1/x) = √2
(x+1/x)² = 6
> (x+1/x) = √6
Now multiplying (x+1/x) with (x-1/x)
> x² - 1/x² = √6 × √2 = √12 = 2√3 .
Answer -
(1) √2
(2) 2√3
_______________________________________
Additional Information -
(a + b)² = a² + 2ab + b²
(a + b)² = (a - b)² + 4ab
(a - b)² = a² - 2ab + b²
(a - b)² = (a + b)² - 4ab
a² + b² = (a + b)² - 2ab
a² + b² = (a - b)² + 2ab
2 (a² + b²) = (a + b)² + (a - b)²
4ab = (a + b)² - (a - b)²
ab = {(a + b)/2}² - {(a-b)/2}²
(a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
(a + b)³ = a³ + 3a²b + 3ab² b³
(a + b)³ = a³ + b³ + 3ab(a + b)
(a - b)³ = a³ - 3a²b + 3ab² - b³
a³ + b³ = (a + b)( a² - ab + b² )
a³ + b³ = (a + b)³ - 3ab( a + b)
a³ - b³ = (a - b)( a² + ab + b²)
a³ - b³ = (a - b)³ + 3ab ( a - b )
_______________________________________
Step-by-step explanation:
Subtracting 2 on both sides
Adding 2 on both sides
Adding 2 on both sides
Subtracting 2 on both sides
Multiplying x+1/x and x-1/x, we get
(x+1/x)(x-1/x)=√8 × 2
x²-1/x²=√8×√4
x²-1/x²=√32=4√2