Math, asked by dunukrish, 9 months ago

If x+1/x=2 Find √x+1/√x. I will give the first answer as brainliest.

Answers

Answered by Anonymous
4

Answer:

\sf{The \ value \ of \ \sqrt{x}+\dfrac{1}{\sqrt{x}} \ is \ 2. }

Given:

\sf{\leadsto{x+\dfrac{1}{x}=2}}

To find:

\sf{The \ value \ of \ \sqrt{x}+\dfrac{1}{\sqrt{x}}}

Solution:

\sf{\leadsto{x+\dfrac{1}{x}=2}}

\sf{\leadsto{\dfrac{x^{2}+1}{x}=2}}

\sf{\leadsto{x^{2}+1=2x}}

\sf{\leadsto{x^{2}-2x+1=0}}

\sf{\leadsto{x^{2}-x-x+1=0}}

\sf{\leadsto{x(x-1)-1(x-1)=0}}

\sf{\leadsto{(x-1)(x-1)=0}}

\sf{\leadsto{x=1 \ or \ 1}}

\sf{Hence, \ the \ value \ of \ x \ is \ 1}

\sf{\leadsto{\sqrt{x}+\dfrac{1}{\sqrt{x}}}}

\sf{Substitute \ x=1, \ we \ get}

\sf{\leadsto{\sqrt1+\dfrac{1}{\sqrt1}}}

\sf{\leadsto{1+\dfrac{1}{1}}}

\sf{\leadsto{1+1}}

\sf{\leadsto{2}}

\sf\purple{\tt{\therefore{The \ value \ of \ \sqrt{x}+\dfrac{1}{\sqrt{x}} \ is \ 2. }}}

Answered by Rohith200422
4

Question:

If  x +  \frac{1}{x}  = 2 , find   \sqrt{x}  +  \frac{1}{ \sqrt{x} }  .

To find:

 \bigstar   \: \sqrt{x}  +  \frac{1}{ \sqrt{x} }

Answer:

 The \: value \: of \: \underline{ \:  \sf \pink{\bf \sqrt{x}  +  \frac{1} {\sqrt{x} }}\: is \: \sf \red{2 \: }}

Given:

 \bigstar \: x +  \frac{1}{x}  = 2

Step-by-step explanation:

 \implies x +  \frac{1}{x}  = 2

Now we have to change to ( a + b )²

 Here \: \:  \underline{ \:  a =  \sqrt{x} , \: b =  \frac{1}{ \sqrt{x} }  \: }

Squaring on both sides,

\implies  {( \sqrt{x}) }^{2}   +  2( \sqrt{x}  ) \big( \frac{1}{ \sqrt{x} }  \big) +  {( \frac{1}{ \sqrt{x} }) }^{2}  =   \sqrt{(2)}

\implies { \big(\sqrt{x}  +  \frac{1}{ \sqrt{x} }   \big)}^{2}  = \sqrt{(2)}

 \implies \boxed{\sqrt{x}  +  \frac{1}{ \sqrt{x} }   =   2}

 \therefore The \: value \: of \: \underline{ \: \bf \sqrt{x}  +  \frac{1} {\sqrt{x} }\: is \:   2  \: }

Formula used:

 \bigstar \:  {(a + b)}^{2}  =  {a}^{2}  + 2ab +  {b}^{2}

Similar questions