Physics, asked by Anonymous, 8 months ago

If x + 1/x = 2, find x⁴ + 1/x⁴

Answers

Answered by Anonymous
231

 \red{\underline{{ \bf Question }}}

  •  \sf If \: x + \dfrac{1}{x} = 2, find \: x^{4} + \dfrac{1}{x^{4} }

 \underline {\underline{{\purple{ \sf Given }}}}

  •  \bf x + \dfrac{1}{x} = 2

 \underline {\underline{{ \purple{\sf To \: Find }}}}

  •  \bf x^{4} + \dfrac{1}{x^{4} }

 \red{\underline{{ \bf Solution }}}

Squaring both sides

 \dashrightarrow \sf(x +  \dfrac{1}{x})^{2}  = (2) ^{2}

 \dashrightarrow  \sf {x}^{2} +  2\times \cancel{ x }\times  \dfrac{1}{ \cancel{x}}  + \dfrac{1}{ {x}^{2} }  = 4

\dashrightarrow  \sf {x}^{2}    + \dfrac{1}{ {x}^{2} }   = 4 -2

\dashrightarrow  \sf {x}^{2}    + \dfrac{1}{ {x}^{2} }   = 2

 \blue{\sf We \: got \: {x}^{2}    + \dfrac{1}{ {x}^{2} }   = 2}

Squaring both sides

\dashrightarrow  \sf ({x}^{2}    + \dfrac{1}{ {x}^{2} }) ^{2}    = (2) ^{2}

\dashrightarrow  \sf {x}^{4}    +2 \times   \cancel{{x}^{2}}  \times  \dfrac{1}{  \cancel{{x}^{2} }} +   \dfrac{1}{ {x}^{4} }     = 4

\dashrightarrow  \sf {x}^{4}    + \dfrac{1}{ {x}^{4} }  = 4-2

\dashrightarrow  \sf {x}^{4}    + \dfrac{1}{ {x}^{4} }  = 2

 \bf Thus, \: x^{4} + \dfrac{1}{ x^{4}}= 2

━━━━━━━━━━━━━━━━━━━━

Answered by MisterIncredible
27

\Large{\underline{\sf{ Given}} : - } \\  \\ \sf \to x + \dfrac{1}{x} = 2  \\  \\ \Large{\underline{\rm{ Required \:  to \:  find }} : - } \\  \\ \bullet \to \:  \tt value  \: of \:  x^4 + \dfrac{1}{x^4 }  \\  \\ \Large{\underline{\mathscr{ F} \sf { ormula   \: used }} : -} \\ \\  \boxed{\tt{ x = \dfrac{ - b \pm \sqrt{ b^2 - 4ac }}{ 2a } }}  \\  \\ \Large{\underline{\mathrm{ S} \tt{ olution } } : -} \\  \\

\to \sf x +  \dfrac{1}{x}  = 2 \\  \\ \to \sf x + \dfrac{1}{x } - 2 = 0 \\ \\ \rm Taking  \:  LCM  \\  \\ \to \sf \dfrac{ x^2 + 1 - 2x }{x } = 2  \\  \\  \textrm{ By cross multiplication on both sides } \\  \\ \to \sf x^2 + 1 - 2x  = 0 \times 2  \\  \\  \to \sf x^2 - 2x + 1 = 0    \\  \\ \texttt{ The standard form of a quadratic equation is \pink{  $ \tt ax^2 + bx + c = 0 $ }} \\  \\ \sf  Compare \ the  \:  standard \ form \ a \ quadratic \:  equation  \: with \:  the \:  given \:  quadratic  \: equation \\  \\ \sf Here , \\ \rm \bullet a = 1  \\ \rm \bullet b = - 2 \\ \bullet \rm c = 1 \\  \\ \sf Using  \:   the \:  Quadratic \:  formula ;  \\  \\ \sf{ x = \dfrac{ - ( - 2 ) \pm \sqrt{ ( - 2 )^2 - 4 ( 1 )( 1 )}}{ 2 ( 1 )}}

 \sf x = \dfrac{ 2 \pm \sqrt{4 - 4 ( 1 ) }  }{ 2 }  \\  \\ \sf x  =  \dfrac{ 2 \pm  \sqrt{4 - 4 } }{2 } \\  \\  \sf x =  \dfrac{2 \pm  \sqrt{0} }{2}  \\  \\ \sf x_1 =  \dfrac{2 + 0}{2} \quad , \quad x_2 =  \dfrac{2 - 0}{2}  \\  \\  \sf x_1 = \dfrac{2}{2} \quad , \quad x_2 = \dfrac{2}{2}  \\  \\ \red{ \sf x_1 = 1 \quad \& \quad x_2 = 1 }

 \tt Now, \:  let's \:  find  \: out \:  the \:  value \:  of \:  x^4  +\dfrac{ 1}{ x^4 }  \\   \\ \sf \to x_1 = 1  \\  \\ \to \sf { x_1}^4 = ( 1 )^4 = 1  \\  \\ \sf value \:  of \:  {x_1}^4 + \dfrac{1}{ {x_1}^4} \\  \\ \to \sf 1 + \dfrac{1}{1}  \\  \\ \to \sf \dfrac{ 1 + 1 }{ 1 } \\ \\ \to \sf \dfrac{2}{1}  \\   \\ \to \sf 2

 \sf Similarly,  \\  \\ \to \sf x_2 = 1  \\  \\ \to \sf {x_2}^4 = (1 )^4 = 1 \\  \\   \sf value \:  of \:  {x_2}^4 + \dfrac{1}{ {x_2}^4} \\  \\ \to \sf 1 + \dfrac{1}{1}  \\  \\ \to \sf \dfrac{ 1 + 1 }{ 1 } \\ \\ \to \sf \dfrac{2}{1}  \\   \\ \to \sf 2

Since, the both values are equal . so, we can conclude that .

 \sf Hence,  \\  \\ \orange{  \implies} \sf \blue{ Value \; of \; x^4 + \dfrac{1}{x^4 } = } \red{ 2 }

Similar questions