Math, asked by Unoreacto, 3 months ago

If x + 1/x = 2, find x⁴ + 1/x⁴​

Answers

Answered by Anonymous
166

\Large{\underline{\bf{ Given}} : - } \\  \\

 \bullet \:  \tt x + \dfrac{1}{x} = 2  \\ \\

 \Large{\underline{\bf{ To \:  find }} : - } \\  \\

 \bullet \: \tt value  \: of \:  x^4 + \dfrac{1}{x^4 }  \\  \\

\Large{\underline{ \bf{Solution}}  : -} \\  \\

\sf : \implies x +  \dfrac{1}{x}  = 2

\sf :\implies  x + \dfrac{1}{x } - 2 = 0

 \rm By \: taking  \:  LCM

 \sf :\implies\dfrac{ x^2 + 1 - 2x }{x } = 0

  \textrm{ By cross multiplication on both sides }

\sf :\implies x^2 + 1 - 2x  = 0 \times x

\sf :\implies \sf x^2 - 2x + 1 = 0

 \sf  By\: comparing \: the  \:  given \: quadratic \:  equation  \: with \:  ax^2 + bx + c = 0

We have,

  • a = 1
  • b = - 2
  • c = 1

  \tt Using  \:   the \:  Quadratic \:  formula :

 \tt{ Formula : -} \underline{\boxed{\tt{ x = \dfrac{ - b \pm \sqrt{ b^2 - 4ac }}{ 2a }}}}

  \sf{: \implies x = \dfrac{ - ( - 2 ) \pm \sqrt{ ( - 2 )^2 - 4 ( 1 )( 1 )}}{ 2 ( 1 )}}

\sf :\implies x = \dfrac{ 2 \pm \sqrt{4 - 4 ( 1 ) }  }{ 2 }

\sf :\implies x  =  \dfrac{ 2 \pm  \sqrt{4 - 4 } }{2 }

\sf :\implies x =  \dfrac{2 \pm  \sqrt{0} }{2}

\sf :\implies x =  \dfrac{2 \pm  0 }{2}

\sf :\implies x =  \cancel{\dfrac{2 }{2}}

\sf :\implies x =  1

 \tt Now, \:  let's \:  find  \: out \:  the \:  value \:  of \:  x^4  +\dfrac{ 1}{ x^4 }

  • \sf x = 1

\sf :\implies { x}^4 = ( 1 )^4 = 1

  \sf Now, for \: value \:  of \:  {x}^4 + \dfrac{1}{ {x}^4} :

\sf :\implies 1 + \dfrac{1}{1}

\sf :\implies 1 + 1

\sf :\implies 2

 \sf \\  \\ \bf \pink{ \therefore Value \: of \: x^4 + \dfrac{1}{x^4 } = 2 }

Similar questions