Math, asked by ashishker19, 3 months ago

if x+1/x=2,findx³+1/x³​

Answers

Answered by Salmonpanna2022
6

Step-by-step explanation:

Given:-

x +  \frac{1}{x}  = 2 \\  \\

To find:-

 \mathcal{The \:  value   \:  \: \: of \:  {x}^{3}  +  \frac{1}{ {x}^{3} } }  = \\  \\

Solution:-

Let's solve the problem

We have,

x +  \frac{1}{x}  = 2 \\

Cubing on both sides, we get

⟹ \bigg(x +  \frac{1}{x}  \bigg)^{3}  = (2 {)}^{3}  \\

⬤ Using algebraic identity:

[(a+b)³ = a³ + b³ + 3ab(a + b) ]

Now

⟹ {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3 \cancel{x} \times  \frac{1}{ \cancel{x}}  \times  \bigg(x +  \frac{1}{x}  \bigg)  = 8 \\  \\

⟹ {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3 \bigg(x +  \frac{1}{x}  \bigg) = 8 \\  \\

⟹ {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3 \times 2 = 8 \\  \\

⟹ {x}^{3}  +  \frac{1}{ {x}^{3} }  + 6 = 8 \\  \\

⟹ {x}^{3}  +  \frac{1}{ {x}^{3} }  = 8 - 6 \\  \\

⟹ {x}^{3}  +  \frac{1}{ {x}^{3} }  = 2 \\  \\

Answer:-

The \:  value \:  of \:  {x}^{3}  +  \frac{1}{ {x}^{3} }  \:  is \: 2 .\\  \\

Used Formulae:

  • (a+b)³ = a³+b³+3ab(a+b)

Similar questions