Math, asked by miraj92, 10 months ago

if x+1/x=2, prove that x^2+1/x^2=x^3+1/x^3=x^4+1/x^4​

Answers

Answered by shadowsabers03
8

Given,

\longrightarrow\sf{x+\dfrac{1}{x}=2}

\longrightarrow\sf{\dfrac{x^2+1}{x}=2}

\longrightarrow\sf{x^2+1=2x}

\longrightarrow\sf{x^2-2x+1=0}

\longrightarrow\sf{(x-1)^2=0}

\Longrightarrow\sf{x=1}

Then we must notice that, for some real number n,

\longrightarrow\sf{x^n+\dfrac{1}{x^n}=1^n+\dfrac{1}{1^n}}

\longrightarrow\sf{x^n+\dfrac{1}{x^n}=1+\dfrac{1}{1}}

\longrightarrow\sf{x^n+\dfrac{1}{x^n}=1+1}

\longrightarrow\sf{x^n+\dfrac{1}{x^n}=2}

Hence it actually implies that the equation \sf{x^n+\dfrac{1}{x^n}=2} is satisfied for every real number values of n if and only if \sf{x+\dfrac{1}{x}=2} or \sf{x=1.}

Thus we can say that, if \sf{x+\dfrac{1}{x}=2,} then,

\longrightarrow\sf{\underline{\underline{x^2+\dfrac{1}{x^2}=x^3+\dfrac{1}{x^3}=x^4+\dfrac{1}{x^4}=x^5+\dfrac{1}{x^5}=\ldots}}}

Hence Proved!

Similar questions