Math, asked by gitanshdigra2003, 1 year ago

If x-1/x =-2 then find the value of x+1/x

Answers

Answered by Eesho
1
HEY MATE HERE IS YOUR ANSWER......
Attachments:
Answered by Anonymous
5

\underline{\textsf{Question :}}

\textsf{If}\:\bold{x-\frac{1}{x} =-2}

\textsf{then}\:x +\frac{1}{x} =?

\underline{\textsf{Solution :}}

\textsf{Given,}\:\:\bold{x-\frac{1}{x} =-2}

\underline{\textsf{Squaring both side we get}}

\implies \bold{x^{2}+\frac{1}{x^{2}} -2*x*\frac{1}{x} =(-2)^{2}}

\implies \bold{x^{2} +\frac{1}{x^{2} } -2=4}}

\implies \bold{x^{2} +\frac{1}{x^{2} } =4+2}

\implies \boxed{\bold{x^{2} +\frac{1}{x^{2}} =6}}

\bold{x^{2}+\dfrac{1}{x^{2} }=6 }\\\\\\\implies{\bold{(x+\dfrac{1}{x}){^2}-2*x*\frac{1}{x} =6}}\\\\\\\implies{\bold{(x+\dfrac{1}{x})^{2}=6+2=8}}\\\\\\\implies{\bold{x+\dfrac{1}{x}=\sqrt{8} =2\sqrt{2}. }}\\\\\\\boxed{\boxed{\bold{x+\dfrac{1}{x}=2\sqrt{2}. }}}

\underline{\textsf{Identity Rules :}}

1.\:\bold{(a+b)^{2}=a^{2}+2ab+b^{2}}

2.\:\bold{(a-b)^{2}=a^{2}-2ab+b^{2}}

3.\:\bold{(a+b)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}}

4.\:\bold{(a-b)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}}

5.\:\bold{a^{2}+b^{2}=(a+b)^{2}-2ab}

6.\:\bold{a^{2}-b^{2}=(a+b)(a-b)}


Grimmjow: Nice Answer!
Anonymous: :)
Similar questions