Math, asked by cluelessmagnet1, 1 year ago

if x - 1/x = 2 then what is x^3 - 1/x^3

Answers

Answered by Raghul101
1
Given,x-1/x=2
Using a^3-b^3=(a-b)^3+3(a)(b)(a-b)

x^3-1/x^3=(x-1/x)^3+3(x)(1/x)(x-1/x)
=(2)^3+3(1)(2)
=8+6
=14
Answered by riya15042006
2

\bold{\large{\boxed{\red{\tt{ANSWER}}}}}

It is given that ,

\boxed{\bold{\blue{\tt{x -  \frac{1}{x}  = 2}}}} -  -  > eq \: 1

Now cubing on both sides we get ,

\rightarrow{ ({x -  \frac{1}{x}) }^{3}  =  {(2)}^{3} }

\rightarrow{ ({x -  \frac{1}{x}) }^{3}  =  8} -  -  > eq \: 2

Now by using identity ,

\bold{\boxed{\large{\pink{\tt{ {(a - b)}^{3}  =  {a}^{3}  -  {b}^{3}  - 3ab(a - b)}}}}}

\rightarrow{{x}^{3}  -  \frac{1}{ {x}^{3} }  - 3(x \times  \frac{1}{x} )(x -  \frac{1}{x} ) = 8 -  - >  (from \: eq \: 2)}

\rightarrow{{x}^{3}  -  \frac{1}{ {x}^{3} }  - 3(x -  \frac{1}{x} ) = 8}

\rightarrow{ {x}^{3}  -  \frac{1}{ {x}^{3} }  - 3(2) = 8 -   -  > from \: eq \: 1}

\rightarrow{ {x}^{3}  -  \frac{1}{ {x}^{3} }  - 6 = 8}

\rightarrow{x}^{3}  -   \frac{1}{ {x}^{3} }  = 8 + 6

\rightarrow{\boxed{\bold{\green{\tt{ {x}^{3}  -  \frac{1}{ {x}^{3} } = 14}}}}}

\bold{\large{\purple{\tt{I  \: hope \:  it  \: helps  \: u  \: dear \:  friend !!}}}}

Similar questions