Math, asked by biplov5227, 1 year ago

If x-1/x = 2, then x⁴-1/x⁴ =?

Answers

Answered by MaheswariS
7

\textbf{Given:}

x-\dfrac{1}{x}=2

\textbf{To find:}

x^4-\dfrac{1}{x^4}

\textbf{Solution:}

\text{Consider,}

x-\dfrac{1}{x}=2

\text{Squaring on bothsides, we get}

(x-\dfrac{1}{x})^2=4

x^2+\dfrac{1}{x^2}-2=4

x^2+\dfrac{1}{x^2}=4+2

\implies\bf\,x^2+\dfrac{1}{x^2}=6

(x+\dfrac{1}{x})^2=x^2+\dfrac{1}{x^2}+2(x)(\dfrac{1}{x})

(x+\dfrac{1}{x})^2=6+2

(x+\dfrac{1}{x})^2=8

\implies\bf\,x+\dfrac{1}{x}=2\sqrt{2}

\text{Now,}

x^4-\dfrac{1}{x^4}

=(x^2)^2-(\dfrac{1}{x^2})^2

\text{Using,}\;\boxed{\bf\,a^2-b^2=(a-b)(a+b)}

=(x^2-\dfrac{1}{x^2})(x^2+\dfrac{1}{x^2})

=(x-\dfrac{1}{x})(x+\dfrac{1}{x})(x^2+\dfrac{1}{x^2})

=(2)(2\sqrt{2})(6)

=24\,\sqrt{2}

\therefore\bf\,x^4-\dfrac{1}{x^4}=24\,\sqrt{2}

Find more:

Ax+by=1 bx+ay=2ab/a2+b2 then (x*2+y*2) (a*2+b*2)=?

https://brainly.in/question/8396453

Similar questions