Math, asked by sahara87, 1 year ago

if x+1/x=2 what is the value of x^3+1/x^3 can you please solve this with an explanation?.?.?.?.​ ?

Answers

Answered by namratap1507
6

Answer:

2

Step-by-step explanation:

(x+1/x)=2

seating both sides

(x+1/x)^2=4

x^2+1/x^2+2=4

x^2+1/x^2=2...........equ (1)

now (x^3+1/x^3)=(x+1/x) (x^2+1/x^2-1)

(x^3+1/x^3)=2×(2-1)=2 Ans

Answered by Anonymous
10

x\:+\:\dfrac{1}{x}\:=\:2

__________ [ GIVEN ]

• We have to find the value of {x}^{3}   \:  +  \: \dfrac{1}{ {x}^{3} }

_____________________________

x\:+\:\dfrac{1}{x}\:=\:2

Squaring on both sides

\bigg(x\:+\:\dfrac{1}{x} \bigg)^{2}   \:  =  \: ( {2)}^{2}

(a + b)² = a² + b² + 2ab

{x}^{2} \:  +  \: \dfrac{1}{ {x}^{2} }  \:  +  \: 2x \:  \times  \:  \dfrac{1}{x}   \:  =  \: 4

{x}^{2} \:  +  \: \dfrac{1}{ {x}^{2} }  \:  +  \: 2\:=\:4

{x}^{2} \:  +  \: \dfrac{1}{ {x}^{2} }  \:=\:4\:-\:2

{x}^{2} \:  +  \: \dfrac{1}{ {x}^{2} }  \:=\:2

____________________________

Now..

{x}^{3}   \:  +  \: \dfrac{1}{ {x}^{3} } =

\bigg (x \:  +  \:  \dfrac{1}{x} \bigg) \: \bigg(  {x}^{2}  \:  +  \:  \dfrac{1}{{x}^{2} }  \:  -  \: x \:  \times  \:  \dfrac{1}{x}  \bigg)

{x}^{3}   \:  +  \: \dfrac{1}{ {x}^{3} } =

\bigg (x \:  +  \:  \dfrac{1}{x} \bigg) \: \bigg(  {x}^{2}  \:  +  \:  \dfrac{1}{{x}^{2} }  \:  -  1 \bigg)

{x}^{3}   \:  +  \: \dfrac{1}{ {x}^{3} }\:=\:(2)\:(2\:-\:1) [From (eq 1)]

{x}^{3}   \:  +  \: \dfrac{1}{ {x}^{3} }\:=\:2(1)

{x}^{3}   \:  +  \: \dfrac{1}{ {x}^{3} }\:=\:2

___________________________

{x}^{3}   \:  +  \: \dfrac{1}{ {x}^{3} }\:=\:2

________ [ ANSWER ]

___________________________

Similar questions