Math, asked by nethravinothkumar, 4 days ago

if (x-1/x)² = x² + a + 1/x² then a = ?​

Answers

Answered by Yuseong
29

Step-by-step explanation:

As per the provided information in the given question, we have been provided that,

  •  \rm {{ \Bigg \{ x - \dfrac{1}{x} \Bigg \}}^{2} = x^2 + a + \dfrac{1}{x^2} } \\

We have been asked to calculate the value of a.

So, here we'll have to use algebraic identities in order to tackle this question. We know that,

⠀⠀⠀⠀⠀⠀⠀★ (a ― b)² = a² + b² — 2ab

Henceforth, using this identity let's simplify the LHS.

  \dashrightarrow \quad \rm { (x)^2 + {\Bigg (\dfrac{1}{x}\Bigg )}^2 - 2\Bigg \{ x\Bigg (\dfrac{1}{x}\Bigg ) \Bigg \} = x^2 + a + \dfrac{1}{x^2} } \\

  \dashrightarrow \quad \rm { x^2 + \dfrac{1}{x^2} - 2\Bigg \{ 1 \Bigg \} = x^2 + a + \dfrac{1}{x^2} } \\

  \dashrightarrow \quad \rm { x^2 + \dfrac{1}{x^2} - 2= x^2 + a + \dfrac{1}{x^2} } \\

Transposing like terms.

  \dashrightarrow \quad \rm { \cancel{x^2+ \dfrac{1}{x^2}} - 2\cancel{ -  \dfrac{1}{x^2} - x^2}  = a } \\

  \dashrightarrow \quad \underline{\boxed{ \bf {-2  = a } }}\\

The value of a is 2.

\rule{200}2

Answered by kvalli8519
8

Given that ,

↪ \: \large{\rm[x -  \frac{1}{x} ]  { }^{2}  \: =  \:  {x}^{2}  + a +  \frac{1}{ {x}^{2} } }

To find ;

value of a

 \underline{ \pink{ \bf SOLUTION }}  :

we can solve this sum by using,

(a - b)² = a² + b² - 2ab

then,

 \rm↪ \:   \cancel{{x}^{2}  }+   \cancel{\frac{1}{ {x}^{2} }  } - 2( \cancel{x})(  \cancel{\frac{1}{x}} ) =   \cancel{{x}^{2} } +  \cancel{ \frac{1}{ {x}^{2} }}  + a

 \rm↪ \:   \color{pink}a =  - 2

 \over▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄

 \underline{ \purple{ \bf FINAL  \:  \: ANSWER}} :

The value of a is -2 .

Similar questions