Math, asked by mahanyashrees, 4 months ago

if [x+(1/x)]=20 then what is [x^2+(1/x^2)] and [x^4+(1/x^4)] ?

Attachments:

Answers

Answered by BrainlyIAS
11

Question :

If  \sf \red{\left(x+ \dfrac{1}{x} \right) = 20}  then the value of  \sf \red{(i) \left( x^2+\dfrac{1}{x^2} \right)\ and\ (ii) \left( x^4 + \dfrac{1}{x^4} \right)}

Solution :

\sf x+ \dfrac{1}{x} = 20

Squaring on both sides ,

\longrightarrow \sf \left( x+\dfrac{1}{x} \right) ^2= (20)^2

\bullet\ \; \sf \orange{(A+B)^2=A^2+B^2+2AB}

\longrightarrow \sf x^2+\dfrac{1}{x^2}+2.x.\dfrac{1}{x} = 400

\longrightarrow \sf x^2+\dfrac{1}{x^2}+2= 400

\longrightarrow \sf x^2+\dfrac{1}{x^2}= 400-2

\longrightarrow \sf \pink{\textsf{\textbf{x}}^{\textsf{\textbf{2}}} \textsf{\textbf{ + }} \dfrac{\textsf{\textbf{1}}}{{\textsf{\textbf{x}}}^{\textsf{\textbf{2}}}} \textsf{\textbf{ = }}  \textsf{\textbf{398}}}

Again squaring on both sides ,

\longrightarrow \sf \left(x^2+\dfrac{1}{x^2}\right)^2= (398)^2

\longrightarrow \sf (x^2)^2+\dfrac{1}{(x^2)^2}+2.x^2.\dfrac{1}{x^2}= (398)^2

\longrightarrow \sf x^4+\dfrac{1}{x^4}+2= 158404

\longrightarrow \sf x^4+\dfrac{1}{x^4}= 158404-2

\longrightarrow \sf \purple{{\textsf{\textbf{x}}}^{\textsf{\textbf{4}}} \textsf{\textbf{ + }} \dfrac{\textsf{\textbf{1}}}{ {\textsf{\textbf{x}}}^{\textsf{\textbf{4}}}} \textsf{\textbf{ = }} \textsf{\textbf{158402}}}

Answered by Anonymous
126

Given :-

If {\bf\red{(x +  \frac{1}{x} ) = 20}} then the value of

{\bf\red{(i) \: (x² +  \frac{1}{x²} ) \: and \: (ii) \: (x⁴ +  \frac{1}{x⁴}) }}

To find :-

{\bf{x +  \frac{1}{x}  = 20}}

Squaring of the both sides,

{\bf{(x +  \frac{1}{x} )² = (20)²}}

{\bf\pink{(A + B)² = A² + B² + 2AB}}

{\bf{x² +  \frac{1}{x²}  + 2.x. \frac{1}{x}  = 400}}

{\bf{x² +  \frac{1}{x²}  + 2 = 400}}

{\bf{x² +  \frac{1}{x²}  = 400 - 2}}

{\bf\green{x² +  \frac{1}{x²}  = 398}}

Again squaring on both sides,

{\bf{(x² +  \frac{1}{x²} )² = (398)²}}

{\bf{(x²)² +  \frac{1}{(x²)²}  + 2.x². \frac{1}{x²}  = (398)²}}

{\bf{x⁴ +  \frac{1}{x⁴}  + 2 = 158404}}

{\bf{x⁴ +  \frac{1}{x⁴}  = 158404 - 2}}

{\bf\blue{x⁴ +  \frac{1}{x⁴}  = 158402}}

{\tt{Hence~Proved,}}\large{\bf\green{✓}}

Similar questions