Math, asked by skabdulkarim055, 1 month ago

if x+1/x=2cos π/5 then show,x5+1/x5= -2​

Answers

Answered by abhi178
8

Given info : x + 1/x = 2cosπ/5.

To show : x⁵ + 1/x⁵ = -2

proof : here we have to use, x⁵ + 1/x⁵ = (x² + 1/x²)(x³ + 1/x³) - (x + 1/x)

so we have to find the values of (x² + 1/x²) and (x³ + 1/x³) at first.

x² + 1/x² = (x + 1/x)² - 2 = [2cos²π/5]² - 2 = 2[2cos²π/5 - 1] = 2cos(2π/5)

[ ∵ 2cos²Ф - 1 = cos2Ф ]

now, x³ + 1/x³ = (x + 1/x)³ - 3(x + 1/x) = [2cosπ/5]³ - 3[2cosπ/5] = 2[4cos³(π/5) - 3cos(π/5) ] = 2cos(3π/5)

[∵ 4cos³Ф - 3cosФ = cos3Ф ]

now, LHS =  x⁵ + 1/x⁵ = 2cos(2π/5) × 2cos(3π/5) - 2cos(π/5)

                    = 2{2cos(2π/5) cos(3π/5)} - 2cos(π/5)

                    = 2[cos(2π + 3π)/5 + cos(3π - 2π)/5] - 2cos(π/5)

[∵ 2cosAcosB = cos(A + B) + cos(A - B) ]

                    = 2cosπ = 2cos(π/5) - 2cos(π/5) = 2cosπ = 2 × -1 = -2 = RHS

hence proved.

Answered by pulakmath007
5

SOLUTION

GIVEN

 \displaystyle \sf \: x +  \frac{1}{x} = 2 \cos  \frac{\pi}{5}

TO PROVE

 \displaystyle \sf \:  {x}^{5} +  \frac{1}{ {x}^{5} } = - 2

EVALUATION

Here it is given that

 \displaystyle \sf \: x +  \frac{1}{x} = 2 \cos  \frac{\pi}{5}

 \displaystyle \sf \implies \:  \frac{ {x}^{2} +  1}{x} = 2 \cos  \frac{\pi}{5}

 \displaystyle \sf \implies \:  {x}^{2} +  1= 2x \cos  \frac{\pi}{5}

 \displaystyle \sf \implies \:  {x}^{2}  - 2x \cos  \frac{\pi}{5}   + 1 = 0

 \displaystyle \sf \implies \: x =  \frac{  + 2\cos  \frac{\pi}{5} \pm \:  \sqrt{4{\cos}^{2}   \frac{\pi}{5}  - 4.1.1 } }{2.1}

 \displaystyle \sf \implies \: x =  \frac{  + 2\cos  \frac{\pi}{5} \pm \:  \sqrt{4{\cos}^{2}   \frac{\pi}{5}  - 4 } }{2}

 \displaystyle \sf \implies \: x =  \frac{  2\cos  \frac{\pi}{5} \pm \: 2i \sqrt{1 - {\cos}^{2}   \frac{\pi}{5}  } }{2}

 \displaystyle \sf \implies \: x =  \frac{  2\cos  \frac{\pi}{5} \pm \: 2i \sin  \frac{\pi}{5}  }{2}

 \displaystyle \sf \implies \: x =    \cos  \frac{\pi}{5} \pm \: i \sin  \frac{\pi}{5}

Case : I

 \boxed{ \:  \displaystyle \sf \: x =    \cos  \frac{\pi}{5} +  \: i \sin  \frac{\pi}{5}   \: }

Using De Moivre's theorem on complex number we get

 \displaystyle \sf  \:  {x}^{5}  =    \cos  \frac{5\pi}{5} \pm \: i \sin  \frac{5\pi}{5}

 \displaystyle \sf  \implies \:  {x}^{5}  =    \cos  \pi \pm \: i \sin  \pi

 \displaystyle \sf  \implies \:  {x}^{5}  =   - 1

 \displaystyle \sf  \implies \:  \frac{1}{ {x}^{5} }  =   - 1

Thus we get

 \displaystyle \sf \:  {x}^{5} +  \frac{1}{ {x}^{5} }

 \displaystyle \sf \:   =  - 1 - 1

 \displaystyle \sf \: = - 2

Case : II

 \boxed{ \:  \displaystyle \sf \: x =    \cos  \frac{\pi}{5}  -   \: i \sin  \frac{\pi}{5}   \: }

Similarly it can be shown that

 \displaystyle \sf \:  {x}^{5} +  \frac{1}{ {x}^{5} } = - 2

Hence proved

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. if a+ib/c+id is purely real complex number then prove that ad=bc

https://brainly.in/question/25744720

2. Prove z1/z2 whole bar is equal to z1 bar/z2 bar.

Bar here means conjugate

https://brainly.in/question/16314493

Similar questions