if x-1/x=2i sin@ then prove that x⁴-1/x⁴=2i sin4@
Answers
Given:
x - 1/x = 2i•sin∅
To prove:
x⁴ - 1/x⁴ = 2i•sin4∅
Proof:
We have ;
x - 1/x = 2i•sin∅
Now,
Squaring both sides , we have ;
=> (x - 1/x)² = (2i•sin∅)²
=> x² - 2•x•(1/x) + (1/x)² = (2i)²•sin²∅
=> x² - 2 + 1/x² = -4•sin²∅
=> x² + 1/x² = 2 - 4•sin²∅ ----------(1)
Now,
We know that ;
(A - B)² = (A + B)² - 4AB
Thus,
=> (x² - 1/x²)² = (x² - 1/x²)² - 4•x²•(1/x²)
=> (x² - 1/x²)² = (2 - 4•sin²∅)² - 4
=> (x² -1/x²)² = 2²-2•2•4sin²∅+(4•sin²∅)²-4
=> (x² - 1/x²)² = 4 - 16sin²∅ + 16sin⁴∅ - 4
=> (x² - 1/x²)² = -16sin²∅ + 16sin⁴∅
=> (x² - 1/x²)² = -16sin²∅•(1 - sin²∅)
=> (x² - 1/x²)² = -16sin²∅•cos²∅
=> (x² - 1/x²)² = -4•(4sin²∅•cos²∅)
=> (x² - 1/x²)² = -4•(2sin∅•cos∅)²
=> (x² - 1/x²)² = -4•sin²2∅
=> x² - 1/x² = √(-4•sin²2∅)
=> x² - 1/x² = 2i•sin2∅ -----------(2)
Now,
x⁴ - 1/x⁴ = (x² - 1/x²)•(x² + 1/x²)
{ using eq-(1) and (2) }
= 2i•sin2∅•(2 - 4•sin²∅)
= 2i•sin2∅•[2(1 - 2sin²∅)]
= 2i•sin2∅•[2•cos2∅]
= 2i•(2sin2∅•cos2∅)
= 2i•sin4∅
.°. x⁴ - 1/x⁴ = 2i•sin4∅
Hence proved .
Step-by-step explanation:
follow the steps given in picture